K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Chọn đáp án D.

Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)

thì phương trình  f t = m có nghiệm t ∈ ( 0 ; 1 ]  

Quan sát đồ thị thấy phương trình  f t = m  có nghiệm  t ∈ ( 0 ; 1 ]  khi  - 1 ≤ m < 1

3 tháng 11 2017

Đáp án C

Phương pháp:

Hàm số y = f(x) nghịch biến trên D khi và chỉ khi  và bằng 0 tại hữu hạn điểm

Cách giải:

Ta có: 

Hàm số đã cho nghịch biến trên 

Xét hàm số: ta có:


1 tháng 9 2021

\(f'\left(x\right)=-x^2+2x+m\)

Để hs y = f(x) nghịch biến trên khoảng (0; dương vc)

\(f'\left(x\right)\le0\forall x\in\left(0;+\infty\right)\)

\(-x^2+2x+m\le0\)

\(m\le x^2-2x\)

\(m\le-1\)

7 tháng 4 2019


1 tháng 12 2017

Chọn D.

Do đó ta có bảng biến thiên sau:

Để hàm số nghịch biến trên khoảng (-1;1) thì 

Chọn C

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

1 tháng 10 2018

19 tháng 9 2018

Chọn: D

Ta có: y ' = m 2 - m - 2 x + m 2

Để hàm số nghịch biến trên khoảng  1 ; + ∞  thì

Vậy  m ∈ [ 1 ; 2 )

Chọn B