K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

19 tháng 9 2019
28 tháng 1 2019

28 tháng 8 2017

Đáp án D.

Đặt t = cos 3 x , ( - 1 ≤ t ≤ 1 ) Phương trình trở thành 2 t 2 + ( 3 - 2 m ) t + m - 2 = 0  

Ta có ∆ = 2 m - 5 2 Suy ra phương trình có hai nghiệm t 1 = 1 2 t 2 = m - 2  

Trường hợp 1:

 Với t 1 = 1 2 → cos 3 x = 1 2 ⇔ 3 x = π 3 + k 2 π 3 x = - π 3 + k 2 π ⇔ x = π 9 + k 2 π 3 x = - π 9 + k 2 π 3  

* Với x = π 9 + k 2 π 3 và  x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ 1 12 < k < 2 3  

Do k ∈ ℤ nên k = 0 → x = - π 9  

* Với x = - π 9 + k 2 π 3 và  x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ - 1 12 < k < 2 3  

Do  k ∈ ℤ nên  k = 0 → x = - π 9

Suy ra phương trình đã cho luôn có hai nghiệm trên khoảng - π 6 ; π 3

Trường hợp 2: Với t 2 = m - 2 → cos 3 x = m - 2 Xét f ( x ) = cos 3 x  trên  - π 6 ; π 3

Đạo hàm f ' ( x ) = - 3 sin 3 x ; f ' ( x ) = 0 ⇔ x = 0 ∈ - π 6 ; π 3  

Bảng biến thiên:


Để phương trình đã cho có 3 nghiệm trên  - π 6 ; π 3 khi và chỉ khi phương trình cos 3 x = m - 2  có 1 nghiệm trên  - π 6 ; π 3 , hay đồ thị f ( x ) = cos 3 x cắt đường thẳng y = m - 2 tại đúng 1 điểm. Quan sát bảng biến thiên, suy ra  - 1 ≤ m - 2 < 0 ⇔ 1 ≤ m < 2

14 tháng 11 2017

Chọn D

30 tháng 5 2017

27 tháng 9 2019

Đáp án A

Phương pháp: Đặt  t = 4 x

Cách giải:

Đặt  t = 4 x (t>0), khi đó phương trình trở thành:

Với  t = 3 2 => Phương trình vô nghiệm

Với  t ≠ 3 2 (t>0) phương trình trở thành 

Để phương trình ban đầu có nghiệm 

Xét hàm số  ta có:

Lập BBT ta được :

Để phương trình có nghiệm dương thì 

25 tháng 12 2018

Đáp án B

log 2 ( m x − 6 x 3 ) + log 1 2 ( − 14 x 2 + 29 x − 2 ) = 0 , ( 1 14 < x < 2 ) ⇔ log 2 ( m x − 6 x 3 ) − 14 x 2 + 29 x − 2 = 0 ⇔ m x − 6 x 3 + 14 x 2 − 29 x + 2 = 0 ⇔ 6 x 3 − 14 x 2 + 29 x − 2 x = m y = 6 x 3 − 14 x 2 + 29 x − 2 x ⇒ y ' = 12 x 3 − 14 x 2 + 2 x 2 y ' = 0 ⇔ x = − 1 3    ( L ) x = 1 2 x = 1 y ( 1 2 ) = 39 2 , y ( 1 ) = 19 ⇒ H = 39 2 − 19 = 1 2

13 tháng 3 2019

Đáp án B