K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Ta có : \(\frac{8n+3}{2n-1}=4+\frac{7}{2n-1}\)
nên để \(8n+3\) chia hết cho \(2n-1\) thì \(7\)phải chia hết cho \(2n-1\), tức \(n\ne\frac{1}{2}\);  \(n=1;n=4;\)
Vậy tập hơp các số nguyên thỏa mãn ycbt là \(n\in\left\{1;4\right\}\)

8 tháng 3 2016

Để 8n + 3 chia hết cho 2n - 1 <=> \(\frac{8n+3}{2n-1}\) là số nguyên

Ta có :\(\frac{8n+3}{2n-1}=\frac{4\left(2n-1\right)+7}{2n-1}=\frac{4\left(2n-1\right)}{2n-1}+\frac{7}{2n-1}=4+\frac{7}{2n-1}\)

Để \(4+\frac{7}{2n-1}\) là số nguyên <=> \(\frac{7}{2n-1}\) là số nguyên

=> 2n - 1 \(\in\) Ư ( 7 ) => Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }

Ta có : 2n - 1 = - 7 <=> 2n = - 6 => n = - 3 ( TM )

            2n - 1 = - 1 <=> 2n = 0 => n = 0 ( TM )

            2n - 1 = 1 <=> 2n = 2 => n = 1 ( TM )

            2n - 1 = 7 <=> 2n = 8 => n = 4 ( TM )

Vậy n \(\in\) { - 3 ; 0 ; 1 ; 4 }

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số,...
Đọc tiếp

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37

Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?

Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?

Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?

Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2

Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số, tận cùng bằng 6 và chia hết cho 9.

 Câu7: 

      a, Có bao nhiêu số có 2 chữ số chia hết cho 9 ?

      b, Tìm tổng các số có 2 chữ số chia hết cho 9 .

Câu8: chứng minh rằng:

      a, 102002 + 8 chia hết cho cả 9 và 2 .

      b, 102004 + 14 chia hết cho cả 2 và 3 .

Câu9: tìm tập hợp A các số tự nhiên x là ước của 75 và là bội của 3.

Câu10: tìm các số tự nhiên x,y sao cho: ( 2x + 1 ). ( y - 5 ) = 12

Câu11: số ababab là số nguyên tố hay hợp số ?

Câu12: chứng minh rằng số abcabc chia hết ít nhất cho 3 số nguyên tố.

Câu13: chứng minh rằng: 2001 . 2002 . 2003 . 2004 + 1 là hợp số.

Câu14: tướng Trần Hưng Đạo đánh tan 50 vạn quân nguyên năm abcd, biết : a là số tự nhiên nhỏ nhất khác 0 ; b là số nguyên tố nhỏ nhất; c là hợp số chẵn lớn nhất có một chữ số; d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất. Vậy abcd là năm nào ?

Câu15: cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số ? vì sao ?

Câu16: tìm 3 số tự nhiên liên tiếp có tích bằng 19 656.

Câu17: tìm số tụ nhiên n biết rằng: 1 + 2 + 3 +...+ n = 1275

Câu18: tìm số chia và thương của một phép chia, biết số bị chia là 150 và số dư là 7.

Câu19: tìm giao của 2 tập hợp A và B :

      a, A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.

      b, A là tập hợp các số nguyên tố. B là tâp hợp các hợp số.

      c, A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ.

                                                                   --------- Hết---------

                                                           GIÚP VỚI, MAI NỘP RỒI. 

11
15 tháng 2 2016

Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi. 


Ta có: 

xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37 

Lại có: 
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37 

Vậy yzx cũng phải chia hết cho 37 


Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.

18 tháng 2 2016

nhiều có làm sao hết 

26 tháng 1 2016

không biết giải  

sorry nha !

26 tháng 1 2016

chưa ai trả lời ngoài mình à ?

12 tháng 4 2016

Khó nhờ!

 

8 tháng 4 2016

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E  Z

<=>4 chia hết cho \(\sqrt{x}-3\)

<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}

+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại  vì \(\sqrt{x}\) >= 0)

+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)

+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)

+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)

+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)

+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)

Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài

 

 

5 tháng 7 2019

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)

Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z

\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
\(x\) 16 4 25 1 49 loại

Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z

26 tháng 4 2016

ta có 3n+2 chia hết cho 2n+1

Nên   2(3n+2) chia hết cho 2n+1

            6n+4 chia hết cho 2n+1

           6n+3+1 chia hết cho 2n+1

           (6n+3)+1 chia hết cho 2n+1

            3*(2n+1)+1 chia hết cho 2n+1

Mà 3*(2n+1) chia hết cho 2n+1 nên 1 phải chia hết cho 2n+1

Nên 2n+1E Ư(1)

       2n+1E{1;-1}

Nếu 2n+1=1 

        2n=1-1

      2n=0

      n=0

Nếu 2n+1=-1

       2n=-1-1

       2n=-2

         n=-1

KL: vậy n=-1 hoặc n=0

17 tháng 1 2018

3n+2\(⋮\)2n+1

\(\Rightarrow\)2(3n+2)\(⋮\)2n+1

6n+4\(⋮\)2n+1

3(2n+1)+1\(⋮\)2n+1

Vì 3(2n+1)\(⋮\)2n+1 nên 1\(⋮\)2n+1

\(\Rightarrow\)2n+1\(\in\)Ư(1)

2n+1 1 -1
n 0 -1

Vậy n\(\in\){0;-1}

26 tháng 12 2015

3x=3(x+1)-3 chia hết cho x+1 khi và chỉ khi 3 chia hết cho x+1.

Do đó x+1 thuộc {-3;-1;1;3}

Vậy x=-4;-2;0;2

banhqua

25 tháng 12 2015

3x=3(x+1)-3 chia hết cho x+1 khi và chỉ khi 3 chia hết cho x+1.

Do đó x+1 thuộc {-3;-1;1;3}

Vậy x=-4;-2;0;2

27 tháng 2 2016

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.

27 tháng 2 2016

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.