Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x+2,5\right|+\left|2x-3\right|\)
\(=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}2x+2,5\ge0\\3-2x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-1,25\\x\le1,5\end{matrix}\right.\Rightarrow-1,25\le x\le1,5\)
Vậy...........
Chúc bạn học tốt!!!
Một tập A được gọi là đếm được nếu nó cùng lực lượng với N, tức là có một song ánh đi từ N đến A.
Từ đây ta đi đến việc giải quyết bài toán. Xét tương ứng f:N------->Z cho bởi qui tắc với x chẵn thì f(x)=x/2, với x lẻ thì f(x)=(-1-x)/2. Rõ ràng f là ánh xạ. Với x1,x2 thuộc N sao cho f(x1)=f(x2); nếu x1 chẵn thì f(x1)=x1/2>=0,suy ra f(x2)>=0,do đó x2 chẵn, suy ra f(x2)=x2/2, suy ra x1=x2; nếu x1 lẻ thì f(x1)=(-1-x1)/2<0,suy ra f(x2)<0,do đó x2 lẻ,suy ra f(x2)=(-1-x2)/2, suy ra x1=x2; vậy f là đơn ánh. Với y thuộc Z tùy ý; nếu y>=0 thì chọn x=2y là số chẵn và khi đó f(x)=2y/2=y; nếu y<0 thì chọn x=-2y-1 là số lẻ và khi đó f(x)=(-1-(-2y-1))/2=y; vậy f là toàn ánh. Suy ra f là song ánh
Để\(\frac{n}{n+3}\)
la stn =>n chia het cho n+3
Ta có: n=n+3-3
Mà n chia hết cho n+3=>[(n+3)-3]chia hết cho n+3
n+3 chia hết cho n+3=>3 chia hết cho n+3
=>n+3 thuoc Ư(3)
mà Ư(3)={1;3;-1;-3}
n+3 | 1 | 3 | -1 | -3 |
n | -2 | 0 | -4 | -6 |
mà n la stn =>n=0
Vậy n=0
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
Ta có:
\(A=\frac{3x+5}{x+2}=\frac{3x+6-1}{x+2}=\frac{3\left(x+2\right)-1}{x+2}\)
\(A=3-\frac{1}{x+2}\)
Để A đạt giá trị nguyên khi và chỉ khi 1 chia hết cho x+2. Tức là x+2 là ước của 1
Ư(1)={-1;1}
\(x+2=-1\Rightarrow x=-3\Rightarrow A=4\)
\(x+2=1\Rightarrow x=-1\Rightarrow A=2\)
3X+5/2+X=3X-6-1/X+2=3(X+2)-1/X+2
=>3-1/X+2 CHIA HET CHO 2+X
=>1 CHIA HẾT CHO 2+X,=>2+X LÀ U CUA 1
=>X+2=-1=>X=-3
=>X+2=1=>X=-1