K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC

Kẻ AH vuông góc BC< OK vuông góc BC

=>OK//AH

OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S

=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)

=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)

Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)

=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)

DE//AB

=>OD/OA=OE/OB=DE/AB=1/3

EF//BC

=>EF/BC=OF/OC=OE/OB=1/3=OD/OA

OF/OC=OD/OA

=>DF//AC

=>DF/AC=OD/OA=1/3

Xet ΔDEF và ΔABC có

DE/AB=EF/BC=DF/AC

=>ΔDEF đồng dạng với ΔABC

=>k=ED/AB=1/3