Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a/ Trên tia đối của tia $MA$ lấy $K$ sao cho $MA=MK$
Dễ thấy $\triangle BMA = \triangle CMK$ (c.g.c)
$\Rightarrow AB=CK$ và $\widehat{B_1}=\widehat{C_1}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CK$
Mà $AB\perp AC\Rightarrow CK\perp AC$
Xét tam giác $BAC$ và $KCA$ có:
$CA$ chung
$AB=CK$ (cmt)
$\widehat{BAC}=\widehat{KCA}=90^0$
$\Rightarrow \triangle BAC=\triangle KCA$ (c.g.c)
$\Rightarrow BC=KA$
$\Rightarrow BC:2=KA:2$ hay $BM=AM$ (đpcm)
b. Tam giác $MBA$ cân tại $M$ (do $AM=BM$) nên đường trung tuyến $MF$ đồng thời là đường cao ứng với cạnh đáy $AB$
$\Rightarrow MF\perp AB$
c. Vì $MF\perp AB$ nên $S_{ABM}=MF.AB:2$
$S_{ABC}=CA.AB:2$
Mà $2S_{ABM}=S_{ABC}$ nên $MF.AB=CA.AB:2$
$\Rightarrow MF=AC:2(1)$
Xét tam giác vuông $HAC$ có trung tuyến $HE$. Ứng dụng kết quả của phần a: Tam giác vuông $BAC$ có trung tuyến AM bằng $MB$ và bằng 1 nửa cạnh huyền. Khi đó $HE=AC:2(2)$
Từ $(1);(2)\Rightarrow HE=MF$
TK:
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
ˆBAM=ˆCAM(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> ˆAMB=ˆAMC
Mà 2 góc này là 2 góc kề bù
⇒ˆAMB=ˆAMC=900
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC
a: Xét ΔEAB có
EM vừa là đường cao, vưa là trung tuyến
=>ΔEAB cân tại E
b: Xét ΔEBD và ΔEAF có
EB=EA
góc DBE=góc AFE
BD=AF
=>ΔEBD=ΔEAF
=>ED=EF
=>EF>DF/2
a/ Xét 2 tam giác EMC và tam giác AMB có:
BM=MC (gt)
AM=ME (gt)
Góc AMB=góc EMC (2 góc đối đỉnh)
=> tam giác EMC = tam giác AMB (Cạnh-góc-cạnh)
=> AB=EC (2 cạnh tương ứng)
b/ Xét tam giác ADE có:
AH=HD (gt)
AM=ME (gt)
=> HM là đường trung bình của tam giác ADE => HM//DE => AD vuông góc DE (1)
và DE/2=HM (Tính chất đường trung bình)
Mà DF=FE=DE/2
=> DF=HM=DE/2 (2)
Từ (1) và (2) => Tứ giác HMFD là hình chữ nhật => MF vuông góc DE
c/ MF//DH (cmt)
=> MF//AD
Giúp em nhanh với
ko