K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2021

Áp dụng định lý Pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{9^2+12^2}\)

\(\Rightarrow BC=15\)

Ta có:

\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}\Rightarrow sinC=\dfrac{3}{5}\)

\(\Rightarrow C\approx36^052'\)

\(B=90^0-C=53^08'\)

a) Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

22 tháng 7 2021

Gửi bạn nè! Tích giúp mình nha^^undefined

22 tháng 7 2021

thank bn nha

 

28 tháng 10 2015

câu này easy có ob^2+oe^2=6,25 và od^2+oc^2=25 mà od=1/2ob;oc=2oe =>oe=2,5 và ob=0 dễ chứng minh nốt bc=5

3:

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)

Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

mà HB+HC=BC=25

nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB\cdot HC=12^2=144\)

mà HB+HC=25

nên HB,HC lần lượt là các nghiệm của phương trình sau:

\(x^2-25x+144=0\)

=>\(x^2-9x-16x+144=0\)

=>x(x-9)-16(x-9)=0

=>(x-9)(x-16)=0

=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)

mà BH<HC

nên BH=9cm; CH=16cm

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

b: ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)

Xét ΔAHM vuông tại H có

\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)

=>\(\widehat{AMH}\simeq73^044'\)

c: ΔAHM vuông tại H

=>\(AH^2+HM^2=AM^2\)

=>\(HM^2=12,5^2-12^2=12,25\)

=>HM=3,5(cm)

\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

28 tháng 10 2015

bạn còn nhớ công thức trung tuyến không, sử dụng cái đó nhé, dùng phương pháp diện tích, suy nghĩ thử xem =))))