K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó:ΔBAE=ΔBDE

Suy ra: EA=ED

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là phân giác của góc HAC

29 tháng 4 2016

a) Nối BE rồi so sánh tam giác ABE và BDE

b) tam giác ADE cân, góc ADE=góc EAD, gics HAD= góc ADE(slt)

c) AK là phân giác góc ngoài đỉnh A => góc BAK = 135 độ

3 tháng 8 2023

a) Ta có bd = ba (do đường cao ah là đường cao của tam giác vuông abc), và bd = ba nên tam giác abd là tam giác cân tại b.
Do đó, ad là đường phân giác của góc hacb (do ad là đường phân giác của tam giác abd).

b) Vẽ dk vuông góc với ac tại k. Ta cần chứng minh ak = ah.
Ta có tam giác akd vuông tại k, và tam giác ahd vuông tại h.
Do đó, ta cần chứng minh tam giác akd đồng dạng với tam giác ahd.
Ta có:
- Góc akd = góc ahd (vuông góc với ac)
- Góc kda = góc hda (cùng là góc nhọn)
- Cạnh ad chung
Do đó, tam giác akd đồng dạng với tam giác ahd.
Vậy, ak = ah.

c) Ta cần chứng minh ab + ac < bc + ah.
Ta có:
ab + ac = ab + ad + dc (do ad là tia phân giác của góc hacb)
= ab + ak + kc (do ak = ah và dk vuông góc với ac)
= ab + ah + kc (do ak = ah)
= ab + ah + hc (do kc = hc)
= ab + ah + bc (do ah là đường cao của tam giác abc)
= bc + ah + ab
= bc + ah + ba (do ab = ba)
= bc + ah.
Vậy, ab + ac < bc + ah.

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
=>ΔAHD=ΔAED

b: DH=DE
DE<DC

=>DH<DC

c: Xét ΔAKC có

CH,KE là đường cao

CH căt KE tại D

=>D là trực tâm

=>AD vuông góc KC