K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

a) Ta có : AH \(\perp\)BC tại H (gt)

và H thuộc đường tròn (A;AH)

=> BC là tiếp tuyến đường tròn (A;AH)

b) Ta có : BH =BD; CH= CE (Tính chất 2 tiếp tuyến cắt nhau)

=> BD + CE = BH +CH = BC(đpcm)

c) Ta có: \(\widehat{DAB}=\widehat{BAH}\)\(\widehat{HAC}=\widehat{CAE}\)

\(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=180^o\)

=> D,A,E thẳng hàng

d) \(\Delta\)ABC vuông nên tâm O của đường tròn ngoại tiếp thuộc trung điểm của BC

OA là đường trung bình của hình thang

=> AO \(\perp\) DE

=> DE là tiếp tuyến của đường tròn đường kính BC

 

29 tháng 1 2021

https://hoc24.vn/cau-hoi/bai-2-cho-tam-giac-abc-nhon-ab-ac-noi-tiep-duong-tron-0-duong-cao-ad-d-ebc-ve-duong-kinh-akcua-dung-tron-o-chung-minh-1-abck-bdak-2-ab-ck-acbk-bcak.333478443083

bạn ơi giúp mình vs
14 tháng 12 2023

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

23 tháng 12 2020

a) Ta có: \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{BAH}+\widehat{CAH}=90^0\)

Xét (A) có 

CE là tiếp tuyến có E là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)

Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{EAH}=2\cdot\widehat{HAC}\)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{DAH}=2\cdot\widehat{HAB}\)

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)(tia AH nằm giữa hai tia AE,AD)

mà \(\widehat{EAH}=2\cdot\widehat{HAC}\)(cmt)

và \(\widehat{DAH}=2\cdot\widehat{HAB}\)(cmt)

nên \(\widehat{EAD}=2\cdot\widehat{HAC}+2\cdot\widehat{HAB}\)

\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)

\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)

hay A,D,E thẳng hàng(đpcm)

b) Xét (A) có 

CE là tiếp tuyến có E là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)

Do đó: CE=CH(Tính chất hai tiếp tuyến cắt nhau)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: BH=BD(Tính chất hai tiếp tuyến cắt nhau)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HC\cdot HB\)

hay \(AH^2=BD\cdot CE\)(1)

Ta có: AH=AE(=R)

mà AH=AD(=R)

nên AE=AD

mà E,A,D thẳng hàng(cmt)

nên A là trung điểm của ED

\(\Leftrightarrow EA=\dfrac{ED}{2}\)

\(\Leftrightarrow AH=\dfrac{ED}{2}\)

hay \(AH^2=\dfrac{DE^2}{4}\)(2)

Từ (1) và (2) suy ra \(BD\cdot CE=\dfrac{DE^2}{4}\)(đpcm)

c) Xét (M) có 

ΔCNH nội tiếp đường tròn(C,N,H∈(M))

CH là đường kính

Do đó: ΔCNH vuông tại N(Định lí)

⇒CN⊥NH(3)

Vì (M) cắt (A) tại N và H

nên MA là đường trung trực của NH(Vị trí tương đối của hai đường tròn)

hay MA⊥NH(4)

Từ (3) và (4) suy ra CN//AM(Định lí 1 từ vuông góc tới song song)

31 tháng 12 2021

a: BC=5cm

AH=2.4cm

a: ΔCAB vuông tại A

=>\(CA^2+AB^2=BC^2\)

=>\(CA^2=10^2-6^2=64\)

=>CA=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH\cdot10=6\cdot8=48\\BH\cdot10=6^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{48}{10}=4,8\left(cm\right)\\BH=\dfrac{36}{10}=3,6\left(cm\right)\end{matrix}\right.\)

Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

Xét (A;AH) có

BH,BD là tiếp tuyến

Do đó: BH=BD=3,6(cm)

b: Xét (A;AH) có

BH,BD là tiếp tuyến

Do đó: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Xét (A;AH) có

CE,CH là tiếp tuyến

Do đó: CH=CE và AC là phân giác của góc EAH

=>\(\widehat{EAH}=2\cdot\widehat{HAC}\)

\(\widehat{EAH}+\widehat{DAH}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot90^0=180^0\)

=>E,A,D thẳng hàng

c: Xét tứ giác AHBD có

\(\widehat{AHB}+\widehat{ADB}=90^0+90^0=180^0\)

=>AHBD là tứ giác nội tiếp

=>A,H,B,D cùng thuộc một đường tròn

2 tháng 12 2023

Cs hình kh ạ