K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

1.

Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)

M có tọa độ \(M\left(x;0\right)\)

Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)

\(min=41\Leftrightarrow M,A',B\) thẳng hàng

\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)

25 tháng 12 2020

2.

Gọi N là trung điểm BC

\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)

\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)

\(\Leftrightarrow2MA.MN.cosAMN=0\)

\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)

\(\Rightarrow M\) thuộc đường tròn đường kính AN

NV
18 tháng 8 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) (a>0 mới đúng, độ dài ko thể nhỏ hơn 0)

\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=a\)

\(\Leftrightarrow3\left|\overrightarrow{MG}\right|=a\) (do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\))

\(\Leftrightarrow MG=\dfrac{a}{3}\)

\(\Rightarrow\) Tập hợp M là đường tròn tâm G bán kính \(\dfrac{a}{3}\)

Chọn C

12 tháng 1 2021

Gọi G là trọng tâm ΔABC

⇒ VT = 6MG

VP  = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)

VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)

Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)

VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)

VP = 6 MI

Khi VT = VP thì MG = MI

⇒ M nằm trên đường trung trực của IG

Tập hợp các điểm M : "Đường trung trực của IG"

NV
26 tháng 11 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MG=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm G bán kính \(R=\dfrac{BC}{3}\)

8 tháng 12 2023

Gọi \(I\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(1,4,1\right)\).

Khi đó: \(\overrightarrow{IA}+4\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\). Gọi Y là trung điểm AC thì \(4\overrightarrow{IB}+2\overrightarrow{IY}=\overrightarrow{0}\)  

\(\Leftrightarrow\overrightarrow{IY}=-2\overrightarrow{IB}\)

Từ đó dễ dàng xác định được vị trí của I là điểm nằm trên cạnh BY sao cho \(IY=2IB\)

 Gọi \(J\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(9,-6,3\right)\). Khi đó \(9\overrightarrow{JA}-6\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)

\(\Leftrightarrow3\left(\overrightarrow{JA}+\overrightarrow{JC}\right)+6\left(\overrightarrow{JA}-\overrightarrow{JB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow6\overrightarrow{JY}+6\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{JY}=\overrightarrow{AB}\)

Vậy ta thấy J là điểm sao cho tứ giác ABYJ là hình hình hành.

Ta có \(\left|\overrightarrow{MA}+4\overrightarrow{MB}+\overrightarrow{MC}\right|+3\left|3\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+4\left(\overrightarrow{MI}+\overrightarrow{IB}\right)+\overrightarrow{MI}+\overrightarrow{IC}\right|+\left|9\left(\overrightarrow{MJ}+\overrightarrow{JA}\right)-6\left(\overrightarrow{MJ}+\overrightarrow{JB}\right)+3\left(\overrightarrow{MJ}+\overrightarrow{JC}\right)\right|\)

\(=\left|6\overrightarrow{MI}\right|+\left|6\overrightarrow{MJ}\right|\)

\(=6\left(MI+MJ\right)\)

 Vậy ta cần tìm M để \(MI+MJ\) đạt GTNN. Ta thấy \(MI+MJ\ge IJ=const\). Dấu "=" xảy ra \(\Leftrightarrow\) M nằm trên đoạn thẳng IJ.

 

20 tháng 9 2023

\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)

Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.