Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha
GT | ΔACB vuông tại A, BD là phân giác, AB/CB=3/5; AC=16cm |
KL | a: AB=?; BC=? b: AD=?; CD=? |
a: AB/BC=3/5
=>AB/3=BC/5=k
=>AB=3k; BC=5k
BC^2=AB^2+AC^2
=>16k^2=16^2=256
=>k^2=16
=>k=4
=>AB=12cm; CB=20cm
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2
=>AD=6cm; CD=10cm
a: AB/BC=3/5
=>AB/3=BC/5=k
=>AB=3k; BC=5k
BC^2=AB^2+AC^2
=>16k^2=16^2=256
=>k^2=16
=>k=4
=>AB=12cm; CB=20cm
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2
=>AD=6cm; CD=10cm
\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Xét ΔACB có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=20/7
=>DB=60/7cm; DC=80/7cm
Xét ΔACB có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=20/7
=>DB=60/7cm; DC=80/7cm
a) BD=45/7 CD=60/7 DE36/7
b) ADB=162/7 BCD k có vì 3 điểm này thẳng hàng
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
a, Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b, Xét ΔABC và ΔABH ta có:
\(\widehat{B}\) \(chung\)
\(\widehat{BAC}=\widehat{AHB}=90^0\)
→ΔABC ∼ ΔABH(g-g)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)
c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)
\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)
Xét ΔABC có AD là phân giác ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)
a: BC=căn 6^2+8^2=10cm
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
c: BH=6^2/10=3,6cm
Với `(AB)/(BC) = 3/5`
`=> (AB)/3 = (BC)/5`
Đặt `(AB)/3 = (BC)/5 = k (k > 0)`
`=> AB = 3k; BC = 5k`
Áp dụng định lý pitago vào tam giác `ABC` vuông tại `A`
`=> AB^2 + AC^2 = BC^2`
`=> (3k)^2 + 16^2 = (5k)^2`
`=> 9k^2 + 256 = 25k^2`
`=> 16k^2 = 256`
`=> k^2 = 16`
`=> k^2 = 4^2`
`=> k = 4 (`Vì `k > 0)`
Khi đó: `AB = 3k = 4 . 3 = 12 (cm)`
`BC = 5k = 5 . 4 = 20 (cm)`
b) Tam giác `ABC` có BD là tia phân giác của tam giác `ABC`. Áp dụng tính chất đường phân giác trong tam giác
`=> (AD)/(AB) = (DC)/(BC) `
`=> (AD)/12 = (DC)/20`
Áp dụng tính chất dãy tỉ số bằng nhau
`=> (AD)/12 = (DC)/20 = (AD + DC)/(12 + 20) = 16/32 = 1/2`
`=> AD = 1/2 xx 12 = 6 (cm) ; DC = 1/2 xx 20 = 10 (cm)`
a: AB/BC=3/5
=>AB/3=BC/5=k
=>AB=3k; BC=5k
BC^2=AB^2+AC^2
=>16k^2=16^2=256
=>k^2=16
=>k=4
=>AB=12cm; CB=20cm
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2
=>AD=6cm; CD=10cm