Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
c: Gọi BN cắt CM tại I
CB//MN
=>IB/IN=IC/IM=BC/MN=1/2
=>B là trung điểm của IN, C là trung điểm của IM
G là trọng tâm của ΔIMN và A là trung điểm của MN
nên I,G,A thẳng hàng
=>ĐPCM
xét tam giác abc, ta có
AB=AC(tam giác ABC cân)
Tam giác ADE là tam giác cân vì
AB=AC(cmt)
hông bít đúng hông nhak pạn
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)