K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)

Xét ΔANM và ΔABC có 

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔANM\(\sim\)ΔABC(c-g-c)

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

Xét ΔNBM và ΔABC có

BN/BA=BM/BC

góc B chung

=>ΔNBM đồng dạng với ΔABC

b: ΔNBM đồng dạng với ΔABC

=>NM/AC=BM/BC

=>NM/4=2,5/5=1/2

=>NM=2cm

8 tháng 3 2022

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Xét ΔABC vuông tại A có AH là đường cao

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=16,8(cm)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)

\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)

Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)

Xét ΔABC có 

M\(\in\)AB(gt)

N\(\in\)AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

Do đó: MN//BC(Định lí Ta lét đảo)

5 tháng 4 2020

Ban viet dung

5 tháng 4 2020

đề bài đúng