K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)

\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

Do đó: \(\widehat{KCE}=\widehat{ABC}\)

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

BD=CE

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDHB=ΔEKC

=>BH=CK

 

a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE

góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=CK

b: Tham khảo:

loading...

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

1.cho góc nhọn xOy , lấy điểm A thuộc Ox, B thuộc Oy sao cho OA=OB, kẻ AH vuông góc với Oy, BK vuông Ox   Chứng minh tam giác OHK cân   Gọi I là giao diểm của AH và BK. Chứng minh OI là tia phân giác của xOy2. Cho tam giác ABC có B=60 độ, phân giác BD, từ A kẻ Ax // BC cắt tia DB tại E   Chứng minh rằng ABE cân   Tính góc BAE3. Cho tam giác ABC tia phân giác của góc C cắt AB ở D. Trên tia đối của CA lấy E sao cho...
Đọc tiếp

1.cho góc nhọn xOy , lấy điểm A thuộc Ox, B thuộc Oy sao cho OA=OB, kẻ AH vuông góc với Oy, BK vuông Ox

   Chứng minh tam giác OHK cân

   Gọi I là giao diểm của AH và BK. Chứng minh OI là tia phân giác của xOy

2. Cho tam giác ABC có B=60 độ, phân giác BD, từ A kẻ Ax // BC cắt tia DB tại E

   Chứng minh rằng ABE cân

   Tính góc BAE

3. Cho tam giác ABC tia phân giác của góc C cắt AB ở D. Trên tia đối của CA lấy E sao cho CE=CD

   Chứng minh CD//EB

   Tia phân giác của góc E cắt đường thẳng CD tại F, vẽ CK vuông góc  EF tại K. Chứng minh CK là tia phân giác của góc ECF

4. Cho tam giác ABC cân tại A, trên AB lấy D, trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy F sao cho BF= CI. Chứng minh rằng

  Tam giác BFD=CIE

  Tam giác DFI cân

  I là trung diểm của DE

 

 

 

1

a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :

OA = OB (GT)

<O chung 

=> Tam giác vuông OBK = Tam giác vuông OAH   ( cạnh góc vuông - góc nhọn kề )

=> OH = OK  (2CTU)

Xét Tam giác OHK có :

OH = OK 

=> Tam giác OHK cân tại O     (dpcm)

b) Vì Tam giác OBK và Tam giác OAH  (cmt)

=> <OKB = <OHA (2GTU)

TC : OH = OK (cmt)

 OA = OB (GT)

mà OH = OB + BH

    OK = OA + AK 

=> AK = BH 

Xét Tam giác vuông AIK và Tam giác vuông BIH

AK = BH

<OKB = <OHA 

=> Tam giác vuông AIK = Tam giác vuông BIH  ( cạnh góc vuông - góc nhọn kề)

=> AI = BI  (2CTU)

Xét Tam giác OAI = Tam giác OBI có :

OA = OB (GT)

OI chung 

AI = BI (cmt)

=> Tam giác OAI = Tam giác OBI  (c.c.c)

=> <AOI = <BOI  (2GTU)

=> OI là tia phân giác của <xOy    (dpcm)


 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác AHED có

B là trung điểm chung của AE và HD

=>AHED là hình bình hành

=>DE//AH