Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có DE//BC=>\(\frac{AB}{AD}=\frac{AC}{AE}=>\frac{AE}{AD}=\frac{AC}{AB}\left(1\right)\)
TA có AC^2=AB.AD=>\(\frac{AC}{AB}=\frac{AD}{AC}\)mà (1)=>\(\frac{AD}{AC}=\frac{AE}{AD}\)=> AC.AE=AD^2
Mặt khác CD^2=AC.AE
=>AD=CD
a) Ta có: ΔDEC vuông tại D(ED\(\perp\)BC tại D)
nên \(\widehat{DEC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(2)
Từ (1) và (2) suy ra \(\widehat{DEC}=\widehat{ABC}\)
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC