K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Vị trí tương đối của hai đường tròn

(O ; R) và (O’ ; r) (R ≥ r)

Hệ thức giữa OO’ với

R và r

Số điểm chung

Hai đường tròn cắt nhau

R – r < OO’ < R + r

2

Hai đường tròn tiếp xúc nhau

- Tiếp xúc ngoài

OO’ = R + r

1

- Tiếp xúc trong

OO’ = R – r > 0

Hai đường tròn không giao nhau

- (O) và (O’) ở ngoài nhau

OO’ > R + r

0

- (O) đựng (O’)

OO’ < R - r

Còn lại phần cuối 0 bên phải nhá Ly yêu?

15 tháng 11 2021

+ (O;R) đựng (O';r)(O;r) có số điểm chung là 0; hệ thức giữa d,R,rd,R,r là d = R - r

(O;R) và (O';r)(O;r) ở ngoài nhau có 0 điểm chung, hệ thức giữa d,R,rd,R,r là d > R + r

(O;R) và (O';r)(O;rTiếp xúc ngoài có 1 điểm chung, hệ thức giữa d,R,rd,R,r là d = R + r

(O;R) và (O';r)(O;rTiếp xúc trong có 1 điểm chung, hệ thức giữa d,R,rd,R,r là d = R - r

(O;R) và (O';r)(O;rcắt nhau có 2 điểm chung, hệ thức giữa d,R,rd,R,r là d < R + r

 

 

28 tháng 11 2021

 

0; d<R-r

Ở ngoài nhau;0

1;d=R+r

Tiếp xúc trong;1

Cắt nhau;R-r<d<R+r

3 tháng 12 2018
R d Vị trí tương đối của đường thẳng và đường tròn
5cm 2cm d<R nên đường thẳng cắt đường tròn.
4cm 4cm Tiếp xúc nhau
3dm 7dm d>R nên đường thẳng và đường tròn không giao nhau.
3 tháng 12 2018
R d vị trí tương đối của đường thẳng và đường tròn
5cm 2cm cắt nhau
4cm 4cm tiếp xúc nhau
3dm 7dm không giao nhau

1. Cho đường tròn (O; 5). Dây cung MN cách tâm O một khoảng bằng 3. Khi đó: A. MN = 8. B. MN = 4 C. MN = 3. D.kết quả khác. 2. Trong các câu sau, câu nào sai ? A. Tâm của đường tròn là tâm đối xứng của nó. B. Đường thẳng a là tiếp tuyến của (O) khi và chỉ khi đường thẳng a đi qua O. C. Đường kính vuông góc với...
Đọc tiếp

1. Cho đường tròn (O; 5). Dây cung MN cách tâm O một khoảng bằng 3. Khi đó:

A. MN = 8.

B. MN = 4

C. MN = 3.

D.kết quả khác.

2. Trong các câu sau, câu nào sai ?

A. Tâm của đường tròn là tâm đối xứng của nó.

B. Đường thẳng a là tiếp tuyến của (O) khi và chỉ khi đường thẳng a đi qua O.

C. Đường kính vuông góc với dây cung thì chia dây cung ấy thành hai phần bằng nhau.

D. Bất kỳ đường kính nào cũng là trục đối xứng của đường tròn.

3. Nếu hai đường tròn (O); (O’) có bán kính lần lượt là 5 cm và 3 cm và khoảng cách hai tâm là 7 cm thì hai đường tròn

A. tiếp xúc ngoài.

B. tiếp xúc trong.

C. không có điểm chung.

D. cắt nhau tại hai điểm.

4. Cho ∆ABC cân tại A nội tiếp đường tròn (O). Phát biểu nào sau đây đúng ? Tiếp tuyến với đường tròn tại A là đường thẳng

A. đi qua A và vuông góc với AB.

B. đi qua A và vuông góc với AC.

C. đi qua A và song song với BC.

D. cả A, B, C đều sai.

5. Cho (O; 6 cm), M là một điểm cách điểm O một khoảng 10 cm. Qua M kẻ tiếp tuyến với (O). Khi đó khoảng cách từ M đến tiếp điểm là:

A. 4 cm.

B. 8 cm.

C. 2\(\sqrt{34}\) cm.

D. 18 cm.

1
10 tháng 3 2020

@Phạm Lan Hương

@Nguyễn Ngọc Lộc

@Nguyễn Việt Lâm

13 tháng 8 2018

A C D B F E G I H O H'

a) Nối 2 điểm O và I

Vì 3 điểm H, O, I cùng nằm trên đường tròn có đường kính OH

\(\Rightarrow\) \(\Delta HIO\) nội tiếp đường tròn đường kính OH (1)

Mà OH là cạnh của \(\Delta HIO\) đồng thời cũng là đường kính (2)

Từ (1), (2) \(\Rightarrow\Delta HIO\) vuông tại I

\(\Rightarrow OI\perp HI\)

\(\Rightarrow OI\) cũng vuông góc với dây CD (3)

\(\Rightarrow IC=ID\left(4\right)\)

Ta lại có: BE \(\perp CD\left(gt\right)\left(5\right)\)

Từ (3), (5) \(\Rightarrow OI\)// BE

\(\Rightarrow OI\)// BF (6)

Mà OA = OB = R (gt) (7)

Từ (6), (7) \(\Rightarrow IA=IF\left(8\right)\)

Từ (4), (8) \(\Rightarrow ADFC\) là hình bình hành (9)

b) Từ (9) \(\Rightarrow FC=AD\left(10\right)\)

Và FC // AD

\(\Rightarrow\) \(\widehat{ICF}=\widehat{IDA}\) (2 góc so le trong) (11)

Từ (10), (11) \(\Rightarrow\Delta EFC=\Delta GAD\) (cạnh huyền - góc nhọn)

\(\Rightarrow CE=DG\) (2 cạnh tương ứng)

c) Nối 2 điểm F và H'

Ta có: HA = HO (gt) (12)

Từ (8), (12) \(\Rightarrow HI\) là đường trung bình của \(\Delta OAF\)

\(\Rightarrow HI\)// OF

\(\Rightarrow CD\)// OF (13)

Từ (5), (13) \(\Rightarrow BE\perp OF\)

\(\Rightarrow\Delta OBF\) vuông tại F (14)

Mà HO = H'O (gt) (15)

Từ (12) \(\Rightarrow HA=HO=\dfrac{1}{2}OA\left(16\right)\)

Từ (15), (16) \(\Rightarrow H'O=\dfrac{1}{2}OA\left(17\right)\)

Từ (7), (17) \(\Rightarrow H'O=\dfrac{1}{2}OB\left(18\right)\)

Mà H'O + H'B = OB

\(\Leftrightarrow\dfrac{1}{2}OB+H'B=OB\)

\(\Leftrightarrow H'B=OB-\dfrac{1}{2}OB\)

\(\Leftrightarrow H'B=\dfrac{1}{2}OB\) (19)

Từ (18), (19) \(\Rightarrow H'O=H'B\) (20)

Từ (14) \(\Rightarrow OB\) là cạnh huyền

Từ (20) \(\Rightarrow\) H' là trung điểm cạnh huyền OB của tam giác vuông OBF

\(\Rightarrow H'\)là tâm của đường tròn ngoại tiếp tam giác vuông OBF

16 tháng 11 2017

1 watermelon

2 melon

3 pear

4 apple

5 grapes

6 lemon

7 orange

8 cái từ tomaao co viết sai ko nếu có thì là tomato đó xong rồi!

16 tháng 11 2017

hàng xiết,hàng dọc,hàng ngang có cả đấy các bạn

1. Cho hình vuông MNPQ có cạnh bằng 4 cm. Khi đó bán kính đường tròn ngoại tiếp hình vuông đó bằng A. 2cm B. \(2\sqrt{2}cm\) C. 2\(\sqrt{3}cm\) D. \(4\sqrt{2}cm\) 2. Đường tròn là hình có A. vô số tâm đối xứng. B. có hai tâm đối xứng. C. một tâm đối xứng. D. không có tâm đối xứng. 3. Cho tam giác ABC cân tại A nội tiếp đường tròn...
Đọc tiếp

1. Cho hình vuông MNPQ có cạnh bằng 4 cm. Khi đó bán kính đường tròn ngoại tiếp hình vuông đó bằng

A. 2cm

B. \(2\sqrt{2}cm\)

C. 2\(\sqrt{3}cm\)

D. \(4\sqrt{2}cm\)

2. Đường tròn là hình có

A. vô số tâm đối xứng.

B. có hai tâm đối xứng.

C. một tâm đối xứng.

D. không có tâm đối xứng.

3. Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Trung tuyến AM cắt đường tròn tại D. Trong các khẳng định sau khẳng định nào sai ?

A. góc ACD = 900 .

B. AD là đường kính của (O).

C. AD ⊥ BC.

D. CD ≠ BD.

4. Cho (O; 25cm). Hai dây MN và PQ song song với nhau và có độ dài theo thứ tự bằng 40 cm, 48 cm. Khi đó:

Khoảng cách từ tâm O đến dây MN là:

A. 15 cm.

B. 7 cm.

C. 20 cm.

D. 24 cm.

Khoảng cách từ tâm O đến dây PQ bằng:

A. 17 cm.

B. 10 cm.

C. 7 cm.

D. 24 cm.

Khoảng cách giữa hai dây MN và PQ là:

A. 22 cm.

B. 8 cm.

C. 22 cm hoặc 8 cm.

D. kết quả khác.

5. Cho (O; 6 cm) và dây MN. Khi đó khoảng cách từ tâm O đến dây MN có thể là:

A. 8 cm.

B. 7 cm.

C. 6 cm.

D. 5 cm.

6. Cho tam giác MNP, O là giao điểm các đường trung trực của tam giác. H, I, K theo thứ tự là trung điểm của các cạnh NP, PM, MN. Biết OH < OI = OK. Khi đó:

A. Điểm O nằm trong tam giác MNP.

B. Điểm O nằm trên cạnh của tam giác MNP.

C. Điểm O nằm ngoài tam giác MNP.

D. Cả A, B, C đều sai.

7. Trên mặt phẳng tọa độ Oxy, cho điểm M(2; 5). Khi đó đường tròn (M; 5)

A. cắt hai trục Ox, Oy.

B. cắt trục Ox và tiếp xúc với trục Oy.

C. tiếp xúc với trục Ox và cắt trục Oy.

D. không cắt cả hai trục.

8. Cho tam giác DEF có DE = 3; DF = 4; EF = 5. Khi đó

A. DE là tiếp tuyến của (F; 3).

B. DF là tiếp tuyến của (E; 3).

C. DE là tiếp tuyến của (E; 4).

D. DF là tiếp tuyến của (F; 4).

1
10 tháng 3 2020

@Nguyễn Ngọc Lộc

@Phạm Lan Hương

@Công chúa xinh đẹp

@Nguyễn Việt Lâm