Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(i,3\left(x+4\right)=105\)
\(x+4=35\)
\(x=31\)
\(k,\left(4x+28\right).3+55=7\)
\(\left(4x+28\right).3=-48\)
\(4x+28=-16\)
\(4x=-44\)
\(x=-11\)
\(l,\left(3x-16\right).343=4802\)
\(3x-16=14\)
\(3x=30\)
\(x=10\)
\(m,43+\left(9-21\right)-317+\left(x+317\right)=0\)
\(-244+\left(x+317\right)=0\)
\(x+317=244\)
\(x=-73\)
\(a,\left(x-10\right)=22:11\)
\(x-10=2\)
\(x=2+10=>x=12\)
\(b.2x=-17-15\)
\(2x=-32\)
\(x=-32:2\)
\(x=-16\)
\(c,305+x=-765-100\)
\(305+x=-865\)
\(x=-865-305\)
\(x=-1170\)
\(d,2^x=16:4\)
\(2^x=4=>2^2=4=>x=2\)
\(C=\frac{5}{12}\div\frac{1}{12\%}+0,04\)
\(C=\frac{5}{12}\div\frac{25}{3}+0,04\)
\(C=\frac{5}{12}\times\frac{3}{25}+0,04\)
\(C=\frac{1}{4}.\frac{1}{5}+0,04\)
\(C=\frac{1}{20}+0,04\)
\(C=0,5+0,04=0,54\)
ta có\(34=\pm1.\pm34=\pm34.\pm1=\pm2.\pm17=\pm17.\pm2.\)
cậu thử hết TH nhé .
Hacker Mũ Trắng
\(\frac{5c-1}{c+1}=\frac{5c+5-6}{c+1}=5-\frac{6}{c+1}\inℤ\Leftrightarrow\frac{6}{c+1}\inℤ\)
mà \(c\)là số nguyên nên \(c+1\inƯ\left(6\right)=\left\{-6,-3,-2,-1,1,2,3,6\right\}\)
\(\Leftrightarrow c\in\left\{-7,-4,-3,-2,0,1,2,5\right\}\).
để phận số trên là số nguyên
\(\Rightarrow4n-33⋮n-6\)
\(\Rightarrow4n-24-9⋮n-6\)
\(\Rightarrow9⋮n-6\)
\(\Rightarrow n-6\inƯ\left(9\right)\)
\(\Rightarrow n-6=\left(-9,-3,-1,1,3,9\right)\)
\(\Rightarrow n=\left(-3,3,8,10,12,18\right)\)
\(4n-33⋮n-6\)
\(4\left(n-6\right)-9⋮n-6\)
\(-9⋮n-6\)hay \(n-6\inƯ\left(-9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n - 6 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 7 | 5 | 9 | 3 | 15 | -3 |
để 6m+39/m+9 là số nguyên thì 6m+39 phải chia hết cho m+9:
6m+9 chia hết cho m+9;6(m+9)=6m+54 cũng chia hết cho m+9
suy ra 6m+54-(6m+39)=15 chia hết cho m+9
m+9 thuộc Ư(15)={-15;-5;-3;-1;1;3;5;15}
Suy ra m thuộc {-24;-14;-12;-10;-8;-6;-4;6}
Vậy m thuộc {-24;-14;-12;-10;-8;-6;-4;6}
Để \(\frac{6m+39}{m+9}\in Z\Rightarrow6m-20⋮m-5\)
\(\Rightarrow\left(6m-30\right)+10⋮m-5\)
\(\Rightarrow6\left(m-5\right)+10⋮m-5\)
\(\Rightarrow10⋮m-5\)
\(\Rightarrow m-5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow m\in\left\{6;4;7;3;10;0;15;-5\right\}\)
Vậy m \(\in\)\(\left\{6;4;7;3;10;0;15;-5\right\}\)
Trả lời:
Ta có: \(\frac{4c+13}{c+2}=\frac{4\left(c+2\right)+5}{c+2}=\frac{4\left(c+2\right)}{c+2}+\frac{5}{c+2}=4+\frac{5}{c+2}\)
Để \(\frac{4c+13}{c+2}\)là số nguyên thì \(\frac{5}{c+2}\)cũng là số nguyên
\(\Rightarrow5⋮c+2\)hay \(c+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
c+2 | 1 | -1 | 5 | -5 |
c | -1 | -3 | 3 | -7 |
Vậy \(c\in\left\{-1;-3;3;-7\right\}\)thì \(\frac{4c+13}{c+2}\)là số nguyên
Answer:
a, \(\left|x\right|=5\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b, \(\left|x\right|< 2\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
c, \(\left|x\right|=-1\Rightarrow x\in\varnothing\)
d, \(\left|x\right|=\left|-5\right|\Rightarrow\left|x\right|=5\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
e, \(\left|x+3\right|=0\Rightarrow x+3=0\Rightarrow x=-3\)
f, \(\left|x-1\right|=4\Rightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
g, \(\left|x-5\right|=10\Rightarrow\orbr{\begin{cases}x-5=10\\x-5=-10\end{cases}}\Rightarrow\orbr{\begin{cases}x=15\\x=-5\end{cases}}\)
h, \(\left|x+1\right|=-2\Rightarrow x\in\varnothing\)
j, \(\left|x+4\right|=5-\left(-1\right)\Rightarrow\left|x+4\right|=5+1=6\Rightarrow\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
k, \(\left|x-1\right|=-10-3\Rightarrow\left|x-1\right|=-13\Rightarrow x\in\varnothing\)
l, \(\left|x+2\right|=12+\left(-3\right)+\left|-4\right|\Rightarrow\left|x+2\right|=12-3+4=13\Rightarrow\orbr{\begin{cases}x+2=13\\x+2=-13\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-15\end{cases}}\)
m, \(\left|x+2\right|-12=-1\Rightarrow\left|x+2\right|=11\Rightarrow\orbr{\begin{cases}x+2=11\\x+2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-13\end{cases}}\)
n, \(135-\left|9-x\right|=35\Rightarrow\left|9-x\right|=100\Rightarrow\orbr{\begin{cases}9-x=100\\9-x=-100\end{cases}}\Rightarrow\orbr{\begin{cases}x=-91\\x=109\end{cases}}\)
o, \(\left|2x+3\right|=5\Rightarrow\orbr{\begin{cases}2x+3=5\\2x+3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)