Câu 4<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=3^2+4^2=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

Do đó: ΔAEH=ΔADH

=>AE=AD

d: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

nên ED//BC

6 tháng 1 2015

xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)

ta có: cạnh huyền BD chung

         góc ABD= góc HBD (vì BD  là phân giác góc B)

=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)

<=>BA=BH (2 cạnh tương ứng)

1 tháng 8 2016

Xét tam giác BAD và tam giác BHD có:

               góc ABD = gics HBD (phân giác goác ABC)

               BD: cạnh chung

               góc A = góc H ( =90 độ)

=> tam giác BAD = tam giác BHD ( cạnh huyền-góc nhọn)

=> BA = BH ( 2 cạnh tương ứng )

13 tháng 6 2017

A B C D E

1/ Vì \(AD\) // \(EC\Rightarrow\widehat{AEC}=\widehat{BAD}\) (đồng vị)

\(\widehat{ACE}=\widehat{DAC}\) (so le trong).

2/ Do \(\widehat{BAD}=\widehat{DAC}\) (AD là tia pg của \(\widehat{BAC}\)) (*)

Kết hợp (*) với ý 1/ \(\Rightarrow\widehat{AEC}=\widehat{ACE}.\)

13 tháng 6 2017

thanghoaThanks

12 tháng 11 2021

Vì AD là tia phân giác của HAB nên KD = DH

       xét tam giác BDK và tam giác IDH 

         BKD = IHD = 90độ

           KD = DH ( cmt )

        BDK = IDH ( 2 góc đối đỉnh )

          suy ra tam giác BDK = tam giác IDH ( g.c.g)

         suy ra IH = KB  ( 2 cạnh t.ư)

 b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH

     xét tam giác BIK  và tam giác HKI

      BK = IH ( câu a )

      BKI = KIH ( cmt )

      KI - cạnh chung

     suy ra tam giác BIK = ta giác HKI ( c.g.c)

     suy ra BIK = IKH ( 2 góc t.ư )

     mà 2 góc này ở vị trí SLT nên HK//IB

c) vì KD vuông góc vs AK 

    AC vuông góc vs AK  suy ra AC // KD ( quan hệ từ vuông góc đến song song )

   suy ra KDA = DAC ( 2 góc SLT)                          ( 1 )

  Xét tam giác KDA và tam giác HDA 

          DKA = DHA = 90độ

          DA - cạnh huyền

          KAD = DAH 

          suy ra tam giác KDA = tam giác HDA (c.h.g.n)

         suy ra KDA= ADH (2 góc t.ư)      (2)

         từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)

        suy ra tam giác DAC cân tại C

       suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC

      Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD

7 tháng 2 2022

bạn ơi mk chx học đến đường cao ạ

11 tháng 10 2021

ư ư ư ư ư ư ư ư thôi bỏ

31 tháng 1 2021

*Tự vẽ hình

- Xét tam giác AHC vuông tại H có :

AH2+HC2=AC2 (Đ/lí Py-ta-go)

=>122+HC2=202

=>144+HC2=400

=> HC2=256

=>HC=16cm

- Có : BC=BH+CH

=> 21=BH+16

=> BH=5cm

Vậy:.......

14 tháng 3 2021

a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)\(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
A B C M N H 1 2

14 tháng 3 2021

b) có Tam giác ABH = tam giác AHC (cmt)

\(\Rightarrow\)A1=A2( 2 góc tương ứng)

xét tam giác AMH và tam giác ANH có

A!=A2( cmt)

AH là cạnh chung

AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)

Do đó  tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)

\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)

\(\Rightarrow\)tam giác AMN cân tại A(ĐN)