\(\sqrt{\left(x-2024\right)^2}+\left|x+y-4z\right|+y^2.\sqrt{5}=0\left(x,y,z\inℝ\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Vì \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|\ge0\);|x+y+z|\(\ge\)0

=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)

\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2}\)

\(\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)

\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)

Vậy ............

29 tháng 10 2016

\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left|x-3\sqrt{5}\right|+\left|y+3\sqrt{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\begin{cases}x-3\sqrt{5}=0\\y+3\sqrt{5}=0\\x+y+z=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=3\sqrt{5}\\y=-3\sqrt{5}\\z=-x-y=-3\sqrt{5}+3\sqrt{5}=0\end{cases}\)

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

22 tháng 2 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0 

<=> x=\(\sqrt{2}\);  y=\(-\sqrt{2}\); z = 0

Vậy ...........

Tk mk nha

20 tháng 11 2016

\(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)}+\left|x-y-z\right|=0\)

\(\Leftrightarrow\left|x-\sqrt{5}\right|+\left|y+\sqrt{3}\right|+\left|x-y-z\right|=0\)

Ta có \(\hept{\begin{cases}\left|x-\sqrt{5}\right|\ge0\\\left|y+\sqrt{3}\right|\ge0\\\left|x-y-z\right|\ge0\end{cases}}\)

=>  \(VT\ge0\)

Dấu = xảy ra khi

\(\hept{\begin{cases}x-\sqrt{5}=0\\y+\sqrt{3}=0\\x-y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}\\y=-\sqrt{3}\\z=\sqrt{5}+\sqrt{3}\end{cases}}\)

2 tháng 11 2015

\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\)

\(\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\)

/ x+y+z/ \(\ge0\)

Mà M =0 

\(x-\sqrt{2}=0=>x=\sqrt{2}\)

\(y+\sqrt{2}=0\Rightarrow y=-\sqrt{2}\)

x+y+z = 0 => z= -(x+y) =-( \(\sqrt{2}-\sqrt{2}\)') =0