Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)
\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)
\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)
b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)
d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)
\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)
\(=-17-12400=-12417\)
e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=\sqrt{25}+\sqrt{25}-\sqrt{9}-\sqrt{9}\)
\(=5+5-3-3\)
\(=4\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=\sqrt{100}+10.5\)
\(=10+10.5\)
\(=10+50\)
\(=60\)
Học tốt nha^^
\(\left[-\sqrt{2,25}+4\sqrt{\left(-2,15\right)^2}-\left(3\sqrt{\dfrac{7}{6}}\right)^2\right]\sqrt{1\dfrac{9}{16}}\)
\(=\left[-1,5+4\sqrt{2,15^2}-9\cdot\dfrac{7}{6}\right]\sqrt{\dfrac{25}{16}}\)
\(=\left[4\cdot\dfrac{43}{20}-10,5-1,5\right]\cdot\dfrac{5}{4}\)
\(=\left[\dfrac{43}{5}-12\right]\cdot\dfrac{5}{4}\)
\(=\dfrac{43}{5}\cdot\dfrac{5}{4}-12\cdot\dfrac{5}{4}\)
\(=\dfrac{43}{4}-15=\dfrac{-17}{4}\)
\(u_1=\dfrac{1}{\sqrt{2}};q=\dfrac{1}{\sqrt{2}}\)
\(S_{99}=\dfrac{\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1}{\sqrt{2}}^{99}-1\right)}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\right):\dfrac{1-\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{1}{1-\sqrt{2}}\cdot\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\)
\(\sqrt{\left(-3\right)^4}-\sqrt{\left(-7\right)^2-\sqrt{-\left(-4\right)^3}}\)
\(=\sqrt{\left(-3\right)^4}-\sqrt{\left(-7\right)^2-\sqrt{64}}\)
\(=\sqrt{81}-\sqrt{49-8}\)
\(=9-\sqrt{41}\)