K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

vô nghiện

8 tháng 11 2016

theo mik thì vô no

NV
6 tháng 3 2019

ĐKXĐ:...

\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)

\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)

\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)

\(\Rightarrow x=5\)

6 tháng 3 2019

Akai Haruma @Nguyễn Việt Lâm

4 tháng 2 2016

\(\Leftrightarrow\sqrt{12-7x}-\sqrt{x^2-x}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)

\(\Rightarrow-\sqrt{3x^2-5x-1}-\sqrt{x^2-x}+\sqrt{x^2-3x+4}+\sqrt{12-7x}=0\)

=>\(x\approx-3,4579061804411\)

3 tháng 2 2016

ra số rất lẻ

Giải phương trình sau:

√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4

21 tháng 7 2019

ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)

Phương trình tương đương

\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)

\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)

\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)

Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

6 tháng 2 2021

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
6 tháng 2 2021

bn giải cụ thể đc không ạ ?