Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)
\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)
\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)
\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)
\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)
\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)
\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)
\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))
\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}\)
A: Phần trắc nghiệm
Câu 1: B
Câu 2: A
Câu 3: C
Câu 4: D
Câu 5: B
Câu 6: A
Câu 7: C
Câu 8: A
Câu 9: D
Câu 10: A
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
\(\sqrt{2023-\sqrt{x}}=2023-x\left(ĐK:x\ge0\right)\)
Đặt \(t=\sqrt{x}\left(t\le2023\right)\)
Pt trở thành : \(\sqrt{2023-t}=2023-t^2\)
\(\Leftrightarrow2023-t=\left(2023-t^2\right)^2\)
\(\Leftrightarrow t^4-4046t+4092529=2023-t\)
\(\Leftrightarrow t^4-4045+4090506=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2023\left(n\right)\\t=2022\left(n\right)\end{matrix}\right.\)
+) Với \(t=2023\Rightarrow x^2=2023\Rightarrow x=\pm17\sqrt{7}\)
+) Với \(t=2022\Rightarrow x^2=2022\Leftrightarrow x=\pm\sqrt{2022}\)
Vì \(x\ge0\) \(\Rightarrow x\in\left\{17\sqrt{7};\sqrt{2022}\right\}\)
Vậy \(S=\left\{17\sqrt{7};\sqrt{2022}\right\}\)
đoạn cuối thiếu dấu"+"
\(A=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}+\dfrac{\sqrt{5}-\sqrt{6}}{5-6}+....+\dfrac{\sqrt{34}-\sqrt{35}}{34-35}+\dfrac{\sqrt{35}-\sqrt{36}}{335-36}\)
\(A=\dfrac{\sqrt{4}-\sqrt{5}+\sqrt{5}-\sqrt{6}+....+\sqrt{35}-\sqrt{36}}{-1}=\dfrac{\sqrt{4}-\sqrt{36}}{-1}\)
\(A=\sqrt{36}-\sqrt{4}=6-2=4\)
Ta có: \(\sqrt{2x+7}-6=x\)
\(\Leftrightarrow\sqrt{2x+7}=x+6\)
\(\Leftrightarrow x^2+12x+36-2x-7=0\)
\(\Leftrightarrow x^2+10x+29=0\)(Vô lý)
Vậy: \(S=\varnothing\)
Điều kiện : x ≥ 0
\(\sqrt{2x+97}-6=x\text{⇔}\sqrt{2x+97}=x+6\\ \text{⇔}2x+97=x^2+12x+36\text{⇔}x^2+10x-61=0\\ \text{⇔}\left[{}\begin{matrix}x=-5+\sqrt{86}\\x=-5-\sqrt{86}\end{matrix}\right.\)