Cho phương trình : \(x^2\) - mx + 2m - 4 = 0 (1)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=3 thì (1): x^2-3x+2*3-4=0

=>x^2-3x+2=0

=>x=1 hoặc x=2

b:

Δ=(-m)^2-4(2m-4)

=m^2-8m+16=(m-4)^2

Để phương trình có hai nghiệm phân biệt thì m-4<>0

=>m<>4

Theo đề, ta có: x1^2+x2^2=13

=>(x1+x2)^2-2x1x2=13

=>m^2-2(2m-4)=13

=>m^2-4m+8-13=0

=>m^2-4m-5=0

=>(m-5)(m+1)=0

=>m=5 hoặc m=-1

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

13 tháng 6 2016

\(x^2+6x+5=0\)

<=>\(x^2+x+5x+5=0\)

<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9

13 tháng 6 2016

x^2+6x+5=0

<=> x^2+x+5x+5=0

<=>x(x+1)+5(x+1)=0

<=> (x+5)(x+1)=0

=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

21 tháng 1 2016

nhìn rối mắt nhỉ 

ai đồng ý thì tick mk

21 tháng 1 2016

giai dc phuong trinh nay chac minh chet rui

19 tháng 7 2018

ồ cuk khó nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:

\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=y=3\)

Vậy HPT có nghiệm $(x,y)=(3,3)$