Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
\(x^2+6x+5=0\)
<=>\(x^2+x+5x+5=0\)
<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9
x^2+6x+5=0
<=> x^2+x+5x+5=0
<=>x(x+1)+5(x+1)=0
<=> (x+5)(x+1)=0
=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
Lời giải:
Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:
\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=y=3\)
Vậy HPT có nghiệm $(x,y)=(3,3)$
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1