K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

b) Xét tứ giác BEDC có 

\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)

nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

14 tháng 5 2023

Có câu hỏi mà không có ai trả lời vậy

Gọi L' là giao của AD với BK

=>BL'//AC

=>BL;/AC=DB/DC

BL=BL'

BL=BK

=>BK=BL'

=>BK/AC=BK'/AC=DB/DC

mà BK/AC=SB/SC

nên cần chứng minh SB/SC=DB/DC

DB/DC*FC/FA*EA/EB=1

SB/SC*FC/FA*EA/EB=1

=>DB/DC=SB/SC

=>A,D,L thẳng hàng

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)Chứng minh rằng: IA.IB = AH.DHb) Tính AIBÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn...
Đọc tiếp

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.

a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)

Chứng minh rằng: IA.IB = AH.DH

b) Tính AI

BÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn (I) tại điểm thứ hai F.

a)CMR:3 điểm B;C;D thẳng hàng

b)CMR: Tứ giác BFEC nội tiếp 

c)CM:3 đường thẳng AD,BF,CE đồng quy?

BÀI 3 Cho tam giác ABC nhọn nội tiếp đường tròn (O), BD và CE là hai đường cao của tam giác , chúng cắt nhau tại H và cắt đường tròn (O) lần lượt ở D' và E'.Chứng minh :

a)Tứ giác BEDC nội tiêp 

b)DE song song D'E'

c)Cho BD cố định.Chứng minh rằng khi A di động trên cung lớn AB sao cho tam giác ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giác ADE không đổi

0
23 tháng 6 2021

a) Vì MA là tiếp tuyến \(\Rightarrow\angle MAB=\angle MCA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle AMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Rightarrow MA^2=MB.MC\)

b) Vì \(DE\parallel AM\) và \(AM\bot AO\) (tiếp tuyến) \(\Rightarrow DE\bot AO\)

\(\Rightarrow\angle OAD+\angle ADE=90\)

Ta có: \(\angle OAD=\dfrac{180-\angle AOC}{2}\) (\(\Delta OAC\) cân tại O) \(=90-\dfrac{1}{2}\angle AOC\)

\(=90-\angle ABC\)

\(\Rightarrow\angle ADE=\angle ABC\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle BEC=\angle BDC=90\)

\(\Rightarrow\) CE là đường cao

c) Vì N là điểm chính giữa cung BC \(\Rightarrow\angle BAN=\angle CAN\)

\(\Rightarrow AN\) là phân giác

Ta có: AI là phân giác \(\angle BAD\Rightarrow\dfrac{IB}{ID}=\dfrac{AB}{AD}\left(1\right)\)

AK là phân giác \(\angle CAE\Rightarrow\dfrac{KC}{KE}=\dfrac{AC}{AE}\left(2\right)\)

Xét \(\Delta DAB\) và \(\Delta EAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AEC=\angle ADB=90\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta DAB\sim\Delta EAC\left(g-g\right)\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AE}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\dfrac{IB}{ID}=\dfrac{KC}{KE}\)

Theo đề: \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\Rightarrow\left(\dfrac{AB}{AD}\right)^2=2\dfrac{AB}{AD}\Rightarrow\dfrac{AB}{AD}=2\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{1}{2}\Rightarrow cosBAC=\dfrac{1}{2}\Rightarrow\angle BAC=60\)

Vậy tam giác ABC có \(\angle BAC=60\) thì \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\)

 

 

23 tháng 6 2021

thank :33333
 

25 tháng 4 2020

A K I D E H B F C

a ) Ta có : \(BD\perp AC,CE\perp AB\)

\(\Rightarrow\widehat{ADH}=\widehat{AEH}=90^0,\widehat{BDC}=\widehat{BEC}=90^0\)

\(\Rightarrow ADHE,BEDC\) nội tiếp

b . Ta có : \(\widehat{DHC}=\widehat{EHB},\widehat{HDC}=\widehat{HEB}=90^0\)

\(\Rightarrow\Delta HDC~\Delta HEB\left(g.g\right)\)

\(\Rightarrow\frac{HD}{HE}=\frac{HC}{HB}\Rightarrow HD.HB=HE.HC\)

c . Vì H là trực tâm \(\Delta ABC\Rightarrow AH\perp BC=F\)

Lại có : \(\widehat{AHD}=\widehat{CBF}\left(+\widehat{FAC}=90^0\right)\)

\(\widehat{AID}=\widehat{ACB}\Rightarrow\widehat{AID}=\widehat{AHD}\)

\(\Rightarrow\Delta AHI\) cân tại A 

Mà \(AD\perp HI\Rightarrow AD\) là trung trực của HI \(\Rightarrow\)AC là đường trung trực của của HI.

d ) Từ câu c \(\Rightarrow AI=AH\)

Tương tự \(\Rightarrow AK=AH\Rightarrow A\) là tâm đường tròn ngoại tiếp \(\Delta HIK\)

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy