Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(42=2\cdot3\cdot7;70=2\cdot5\cdot7\)
=>\(BCNN\left(42;70\right)=2\cdot3\cdot5\cdot7=210\)
=>\(BC\left(42;70\right)=B\left(210\right)=\left\{0;210;420;...\right\}\)
b: \(70=2\cdot5\cdot7;180=3^2\cdot5\cdot2^2\)
=>\(BCNN\left(70;180\right)=2^2\cdot3^2\cdot5\cdot7=1260\)
=>\(BC\left(70;180\right)=\left\{1260;2520;...\right\}\)
c: \(5=5;7=7;8=2^3\)
=>\(BCNN\left(5;7;8\right)=5\cdot7\cdot8=280\)
=>\(BC\left(5;7;8\right)=\left\{280;560;...\right\}\)
d: \(12=2^2\cdot3;18=3^2\cdot2\)
=>\(BCNN\left(12;18\right)=2^2\cdot3^2=36\)
=>\(BC\left(12;18\right)=\left\{36;72;...\right\}\)
e: \(15=3\cdot5;18=3^2\cdot2\)
=>\(BCNN\left(15;18\right)=3^2\cdot2\cdot5=90\)
=>\(BC\left(15;18\right)=\left\{90;180;...\right\}\)
f: \(84=2^2\cdot3\cdot7;108=3^3\cdot2^2\)
=>\(BCNN\left(84;108\right)=2^2\cdot3^3\cdot7=756\)
=>\(BC\left(84;108\right)=\left\{756;1512;...\right\}\)
j: \(33=3\cdot11;44=2^2\cdot11;55=5\cdot11\)
=>\(BCNN\left(33;44;55\right)=3\cdot2^2\cdot5\cdot11=660\)
=>\(BC\left(33;44;55\right)=\left\{660;1320;...\right\}\)
g: \(1=1;12=2^2\cdot3;27=3^3\)
=>\(BCNN\left(1;12;27\right)=1\cdot2^2\cdot3^3=108\)
=>\(BC\left(1;12;27\right)=\left\{108;216;...\right\}\)
n: \(5=5;9=3^2;11=11\)
=>\(BCNN\left(5;9;11\right)=5\cdot3^2\cdot11=495\)
=>\(BC\left(5;9;11\right)=\left\{495;990;...\right\}\)
ta có : (1/35)^7 giữ nguyên
(1/15)^9=[(1/15)^2]^7=(1/3375)^7
vì ^7=^7 . Mà 35<3375 =>1/35>1/3375
=>(1/35)^7>(1/3375)^7 => (1/35)^7>(1/15)^9
Vậy (1/35)^7>(1/15)^9
\(\frac{17}{33}.\frac{2}{5}+\frac{3}{5}.\frac{17}{33}-\frac{17}{33}\)
\(=\frac{17}{33}\times\frac{2}{5}+\frac{3}{5}\times\frac{17}{33}-\frac{17}{33}\times1\)
\(=\frac{17}{33}\times\left(\frac{2}{5}+\frac{3}{5}-1\right)\)
\(=\frac{17}{33}\times\left(1-1\right)\)
\(=\frac{17}{33}\times0=\frac{17}{33}\)
c: \(=\dfrac{4}{9}\left(\dfrac{5}{7}+\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{7}{5}\right)=\dfrac{4}{9}\cdot\left(1-1\right)=0\)
d: \(=\dfrac{4-3-1}{12}\cdot\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)=0\cdot\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)=0\)