K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Ta có :

\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)

=> C < 1 / 3

27 tháng 11 2016

Ta có:

\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\Rightarrow C< \frac{1}{3}\)

Vậy \(C< \frac{1}{3}\)

7 tháng 4 2015

\(A=\frac{1}{\sqrt{2.1}\left(\sqrt{2}+\sqrt{1}\right)}+\frac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+\frac{1}{\sqrt{3.4}\left(\sqrt{4}+\sqrt{3}\right)}+...+\frac{1}{\sqrt{999.1000}\left(\sqrt{1000}+\sqrt{999}\right)}\)

\(A=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2.1}\left(2-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2.3}\left(3-2\right)}+\frac{\sqrt{4}-\sqrt{3}}{\sqrt{3.4}\left(4-3\right)}+...+\frac{\sqrt{1000}-\sqrt{999}}{\sqrt{999.1000}\left(1000-999\right)}\)

\(A=\frac{\sqrt{2}}{\sqrt{2.1}}-\frac{\sqrt{1}}{\sqrt{2.1}}+\frac{\sqrt{3}}{\sqrt{2.3}}-\frac{\sqrt{2}}{\sqrt{2.3}}+\frac{\sqrt{4}}{\sqrt{3.4}}-\frac{\sqrt{3}}{\sqrt{3.4}}+...+\frac{\sqrt{1000}}{\sqrt{999.1000}}-\frac{\sqrt{999}}{\sqrt{1000.999}}\)

\(A=\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{999}}-\frac{1}{\sqrt{1000}}\)

\(A=\frac{1}{1}-\frac{1}{\sqrt{1000}}=\frac{\sqrt{1000}-1}{\sqrt{1000}}=\frac{10\sqrt{10}-1}{10\sqrt{10}}\)

 

 

 

11 tháng 7 2016

Đặt \(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{1000}}\)

\(=>4A=1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{999}}\)

\(=>4A-A=\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{1000}}\right)\)

\(=>3A=1-\frac{1}{4^{1000}}=>A=\frac{1-\frac{1}{4^{1000}}}{3}=\frac{1}{3}-\frac{1}{\frac{4^{1000}}{3}}<\frac{1}{3}\)

Vậy.......................
 

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

27 tháng 8 2017

\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4A=4\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow4A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(\Rightarrow4A-A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-...-\frac{1}{4^{999}}-\frac{1}{4^{1000}}\)

\(\Rightarrow3A=1-\frac{1}{4^{1000}}\)

\(\Rightarrow A=\frac{1-\frac{1}{4^{1000}}}{3}\) 

làm tiếp nhé ...okok

11 tháng 6 2016

\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{.999}{1000}\)

\(=\frac{1.2.3.....999}{2.3.4.....1000}\)

\(=\frac{1}{1000}\)

16 tháng 6 2016

1/1000

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)

\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)

Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)    

b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)

 \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)

Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).

`#3107`

`a)`

`3/4 + (1/2 - 1/3)`

`= 3/4 + (3/6 - 2/6)`

`= 3/4 + 1/6`

`= 11/12`

 

`3/4 + 1/2 - 1/3`

`= 9/12 + 6/12 - 4/12`

`= (9 + 6 - 4)/12`

`= 11/12`

Vì `11/12 = 11/12`

`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`

`b)`

`2/3 - (1/2 + 1/3)`

`= 2/3 - (3/6 + 2/6)`

`= 2/3 - 5/6`

`= -1/6`

 

`2/3 - 1/2 - 1/3`

`= 4/6 - 3/6 - 2/6`

`= (4 - 3 - 2)/6`

`= -1/6`

Vì `-1/6 = -1/6`

`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`

10 tháng 7 2016

\(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(4M=\frac{4}{4}+\frac{4}{4^2}+...+\frac{4}{4^{1000}}\)

\(4M=1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{4^{999}}\)

\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\right)\)

\(3M=1-\frac{1}{4^{1000}}\)

\(M=\left(1-\frac{1}{4^{1000}}\right):3\)

\(M=\frac{4^{1000}-1}{4^{1000}}:3\)

\(M=\frac{4^{1000}-1}{3.4^{1000}}\)

\(\frac{1}{3}=\frac{4^{1000}}{3.4^{1000}}\)

vì \(\frac{4^{1000}-1}{4^{1000}}< \frac{4^{1000}}{3.4^{1000}}\)

nên \(M< \frac{1}{3}\)