K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

Ta có 20152015 : 20152015
Ta so sánh 20152016+1 và 20152011+1
Vì 20152015 > 20152011
20152016+1 > 20152011 +1
2 phân số có cùng tử số, mẫu của phân số nào nhỏ hơn thì phân số đó lớn hơn
20152015 + 1 < 20152015 + 1
20152016 + 1    20152017 + 1

ko biết mình là đúng không

a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)

b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    

\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)

\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    \(\frac{2015}{2016}\)<    \(\frac{2017}{2016}\)và    \(\frac{2016}{2015}\)

16 tháng 3 2017

M~1+1+1=3

N~1

=> M>N

16 tháng 3 2017

m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
 

21 tháng 10 2016

Có: \(\sqrt{2015}< \sqrt{2016}\)

=>\(\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2016}}\)

=>\(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>0\)

=>\(\sqrt{2015}+\sqrt{2016}+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)

=>\(\left(\sqrt{2015}+\frac{1}{\sqrt{2015}}\right)+\left(\sqrt{2016}-\frac{1}{\sqrt{2016}}\right)>\sqrt{2015}+\sqrt{2016}\)

=>\(\frac{2016}{\sqrt{2015}}+\frac{2015}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)

26 tháng 12 2019

\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{1+\frac{2015}{2}+1+...+\frac{1}{2016}+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)(2016 số hạng 1 ở tử số)

\(=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=2017\)

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

22 tháng 12 2016

sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)

30 tháng 7 2019

\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)