Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sách Giáo Khoa
Bài giải:
HD: Thực hiện phép nhân rồi so sánh kết quả với số còn lại.
a) (-67) . 8 < 0 ; b) 15 . (-3) < 15; c) (-7) . 2 < -7.
a) (-67).8 = -(|-67|.8)
= -536 < 0
b) 15.(-3) = -(15.|-3|)
= -45 < 15
c) (-7).2 = -(|-7|.2)
= -14 < -7
a. \(\left(-9\right).\left(-8\right)\) với \(0\)
\(\rightarrow72.....0\)
\(\rightarrow72>0\)
b. \(\left(-12\right).4\) với \(\left(-2\right).\left(-3\right)\)
\(\rightarrow\left(-48\right).......6\)
\(\rightarrow\left(-48\right)< 6\)
c. \(\left(+20\right).\left(+8\right)\) với \(\left(-19\right).\left(-9\right)\)
\(\rightarrow160......171\)
\(\rightarrow160< 171\)
Bài 1: Tính ( hợp lý nếu có thể )
\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)
\(=-1+1+\dfrac{2}{-5}\)
\(=0+\dfrac{2}{-5}\)
\(=\dfrac{2}{-5}\)
\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)
\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)
\(=0+\dfrac{2}{3}\)
\(=\dfrac{2}{3}\)
\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1\)
\(=0\)
\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)
\(=\dfrac{1}{6}+\dfrac{-1}{6}\)
\(=0\)
Bài 2: Tìm x,biết:
a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}-\dfrac{2}{3}\)
\(x=\dfrac{2}{15}\)
Vậy \(x=\dfrac{2}{15}\)
b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=\dfrac{3}{3}=1\)
Vậy \(x=1\)
c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!
\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)
\(x=\dfrac{1}{44}\)
Vậy \(x=\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\)
a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)
b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)
c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\) (1)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\) (2)
(1) và (2) suy ra \(21^{15}< 27^3.49^8\)
d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\) (3)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\) (4)
Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)
e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\) (5)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\) (6)
Từ (5) và (6) suy ra \(3^{21}>2^{31}\)
g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)
Suy ra \(202^{303}>303^{202}\)
bài 1) a) \(1+2+3+4+........+2005+2006\)
\(\Leftrightarrow\) \(\left(1+2006\right)+\left(2+2005\right)+........+\left(1003+1004\right)\)
\(\Leftrightarrow\) \(2007.\dfrac{2006}{2}=2007.1003=2013021\)
b) \(5+10+15+.......+2000+2005\)
\(\Leftrightarrow\) \(\left(2005+5\right)\left(2000+10\right)+.......+\left(1000+1010\right)\)
\(\Leftrightarrow\) \(2010.\dfrac{2005}{5}=2010.401=405010\)
c) \(140+136+132+.......+64+60\)
\(\Leftrightarrow\) \(\left(140+60\right)+\left(136+64\right)+.......+\left(100+100\right)\)
\(\Leftrightarrow\) \(200.10\) = \(2000\)
1)
a) \(1+2+3+4+.....+2005+2006\)
Số các số hạng của dãy trên là:
\((2006-1):1+1=2006\)
Tổng dãy là:
\(\dfrac{2006\left(2006+1\right)}{2}=2013021\)
b) \(5+10+15+.....+2000+2005\)
Số các số hạng của dãy là:
\((2005-5):5+1=401\)
Tổng dãy là:
\(\dfrac{401\left(2005+5\right)}{2}=403005\)
c)\(140+136+132+.....+64+60\)
\(=60+64+.....+132+136+140\)
Số số hạng của dãy là:
\((140-60):4+1=11\)
Tổng dãy là:
\(\dfrac{11\left(60+140\right)}{2}=1100\)
a) \(\dfrac{11}{21}+\dfrac{-4}{7}=\dfrac{11}{21}+\dfrac{-12}{21}=\dfrac{-1}{21}\)
b) \(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}=\dfrac{1}{3}+\dfrac{14}{25}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\left(\dfrac{14}{25}+\dfrac{11}{25}\right)+\dfrac{2}{7}=-1+1+\dfrac{2}{7}=\dfrac{2}{7}\)
c) \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{14}=\dfrac{28}{42}+\dfrac{30}{42}-\dfrac{9}{42}=\dfrac{49}{42}=\dfrac{7}{6}\)
d) \(\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{9}{45}=\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{1}{5}=\dfrac{14}{35}-\dfrac{15}{35}+\dfrac{7}{35}=\dfrac{6}{35}\)
e) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{45}{5}=\dfrac{21}{47}+\dfrac{1}{5}+\dfrac{26}{47}+\dfrac{45}{5}=\left(\dfrac{21}{47}+\dfrac{26}{47}\right)+\left(\dfrac{1}{5}+\dfrac{45}{5}\right)\)
\(=1+\dfrac{46}{5}=\dfrac{51}{5}\)
f) \(\dfrac{15}{12}-\dfrac{18}{13}+\dfrac{5}{13}-\dfrac{3}{12}=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(-\dfrac{18}{13}+\dfrac{5}{13}\right)=1+\left(-1\right)=0\)
g) \(\dfrac{-8}{18}-\dfrac{15}{27}=\dfrac{-4}{9}-\dfrac{5}{9}=\dfrac{-9}{9}=-1\)
h)\(\dfrac{3}{7}+\dfrac{-5}{2}-\dfrac{3}{5}=\dfrac{30}{70}+\dfrac{-175}{70}-\dfrac{42}{70}=\dfrac{-187}{70}\)
i) \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{11.16.3}{12.33.5}=\dfrac{4}{15}\)
a: 2/9=4/18
1/3=6/18
5/18=5/18
b: 7/15=14/30
1/5=6/30
-5/6=-25/30
c: -21/56=-3/7
-3/16=-63/336
5/24=70/336
-21/56=-3/7=-144/336
d: \(\dfrac{-4}{7}=\dfrac{-36}{63}\)
8/9=56/63
\(-\dfrac{10}{21}=-\dfrac{30}{63}\)
e: 3/-20=-3/20=-9/60
-11/-30=11/30=22/60
7/15=28/60
So sánh :
a, 6^25 và 5 . 6^24
6^25 = 6^24 . 6^1 =6^24 . 6
Vì 6^24 . 6 > 5 . 6^24 ( 6 > 5 ) => 6^25 > 5 . 6^24
Vậy 6^25 > 5 . 6^24
b, 7 . 2^16 và 2^19
2^19 = 2^16 . 2^3 = 2^16 . 8
Vì 7 . 2^16 < 2^16 . 8 ( 7 < 8 ) => 7 . 2^16 < 2^19
Vậy 7 . 2^16 < 2^19
a) (-12) .(-8) > 90
b) (-21) . (-3) > 59
c) (-15) .(-28) > 400
d) (-22) .(-21) > 420