K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

1-1/2015 + 1-1/2016

=(1+1)-(1/2016+1/2015)

=2-4031/4062240

2015+2016/2016+2017

=4031/4033

2-4031/4062240>1

4031/4033<1

vậy 2014/2015 + 2015/2016 > 2015+2016/2016+2017

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017

15 tháng 7 2016

(2016/2017) = (2017/2016)

8 tháng 4 2017

TA có :\(\frac{2015.2016-1}{2015.2016}=\frac{2015.2016}{2015.2016}-\frac{1}{2015.2016}=1-\frac{1}{2015.2016}\)

Ta có:\(\frac{2016.2017-1}{2016.2017}=\frac{2016.2017}{2016.2017}-\frac{1}{2016.2017}=1-\frac{1}{2016.2017}\)

Vì \(2015.2016< 2016.2017\)

\(\Rightarrow\frac{1}{2015.2016}>\frac{1}{2016.2017}\)

\(\Rightarrow1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)

\(\Rightarrow\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)

Vậy \(\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)

14 tháng 4 2016

Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q

Suy ra : P < Q

Vậy P < Q.

14 tháng 4 2016

Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy     :P>Q

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

30 tháng 7 2016

bằng nhau