Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
TA có :\(\frac{2015.2016-1}{2015.2016}=\frac{2015.2016}{2015.2016}-\frac{1}{2015.2016}=1-\frac{1}{2015.2016}\)
Ta có:\(\frac{2016.2017-1}{2016.2017}=\frac{2016.2017}{2016.2017}-\frac{1}{2016.2017}=1-\frac{1}{2016.2017}\)
Vì \(2015.2016< 2016.2017\)
\(\Rightarrow\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
\(\Rightarrow1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
\(\Rightarrow\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Vậy \(\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q
Suy ra : P < Q
Vậy P < Q.
Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy :P>Q
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
1-1/2015 + 1-1/2016
=(1+1)-(1/2016+1/2015)
=2-4031/4062240
2015+2016/2016+2017
=4031/4033
2-4031/4062240>1
4031/4033<1
vậy 2014/2015 + 2015/2016 > 2015+2016/2016+2017