Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
Gọi I là trung điểm của BC
K là giao của OI với DA'
M là giao của EI với CF
N đối xứng D qua I
ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
=>OI//AD
=>OK//AD
ΔADA' có OA=OA'; OK//AD
=>KD=KA'
ΔDNA' có ID=IN và KD=KA'
nên IK//NA'
=>NA' vuông góc BC
góc BEA'=góc BNA'=90 độ
=>BENA' nội tiếp
=>góc EA'B=góc ENB
góc EA'B=góc AA'B=góc ACB
=>góc ENB=góc ACB
=>NE//AC
=>DE vuông góc EN
Xét ΔIBE và ΔICM có
góc EIB=góc CIm
IB=IC
góc IBE=góc ICM
=>ΔIBE=ΔICM
=>IE=IM
ΔEFM vuông tại F
=>IE=IM=IF
DENM có IE=IM và ID=IN nên DENM là hình bình hành
=>DENM là hình chữ nhật(Vì DE vuông góc EN)
=>IE=ID=IN=IM
=>ID=IE=IF
=>I là tâm đường tròn ngoại tiếp ΔDEF
mà I cố định
nên tâm đường tròn ngoại tiếp ΔDEF là một điểm cố định
GỌI GIAO ĐIỂM CỦA AH VỚI MB LÀ G
XÉT 2 TAM GIÁC ĐỒNG DẠNG AKH VÀ MKB ==>\(\frac{KH}{KB}=\frac{AK}{KM}\)<=>KH.KM=AK.BK
ĐỂ KH.BK LỚN NHẤT KHI AK.BK LỚN NHẤT
1) nối OM;ON .vì K là trung điểm của MN=>KN=KM=KC=1/2MN( TAM GIÁC VUÔNG ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN = NỬA CẠNH HUYỀN)
VÌ OM=ON( CÙNG =R) ==> tam giác OMN cân tại O . XÉT tam giác OMN cân tại O CÓ OK là đường trung tuyến nên nó đồng thời là đường cao ) ==> OK vuông góc với MN ==> TAM giác OKN vuông tại K
XÉT TAM GIÁC OKN vuông tại K .THEO PY-TA GO TA CÓ \(OK^2+KN^2=ON^2\)
MÀ KN=KC (chứng minh trên) ==>\(OK^2+KC^2=ON^2\)
MÀ ON ko đổi ( vì bằng bán kính đường tròn tâm O) ==> \(OK^2+KC^2\) ko đổi
Áp dụng công thức tính đường trung tuyến: KI=\(\sqrt{\frac{2\left(KC^2+KO^2\right)-CO^2}{4}}\)
THEO CÂU a: KC^2+KO^2=ON^2
=>KI=\(\sqrt{\frac{2\cdot ON^2-CO^2}{4}}=\sqrt{\frac{ON^2+\left(ON^2-CO^2\right)}{4}}=\sqrt{\frac{ON^2+CN^2}{4}}\)=\(\frac{\sqrt{R^2+OA^2-CO^2}}{2}=\sqrt{\frac{R^2+AC^2}{4}}\)
Vì C cố định nên khoảng cách KI là cố định
vậy khi M di động trên (O;R) thì K di động trên 1 đường tròn cố định tâm I là trung điểm của CO
1) ta có góc BAF+góc DAE=90 ĐỘ
góc DAK +góc DAE=90 ĐỘ
=> góc BAF= góc DAK
XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G
=>tam giác ABF=tam giác DAK
==>AK=AF => tam giác AKF cân tại A
2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)
TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)
TỪ (1) và (2) ==> điều cần chứng minh
3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao
==> AI vuông góc với KF
DO ĐÓ góc AIF=90 độ
tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh
đợi một tí thí nữa mk giải típ mệt quá