Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\sqrt{27}+\sqrt{6}+1=3\sqrt{3}+\sqrt{6}+1\)(1))
\(\sqrt{48}=4\sqrt{3}=3\sqrt{3}+\sqrt{3}\)(2)
ta lại có: \(\sqrt{6}>\sqrt{3}\Rightarrow\sqrt{6}+1>\sqrt{3}\) (3)
từ (1)(2)và(3)\(\Rightarrow3\sqrt{3}+\sqrt{6}+1>3\sqrt{3}+\sqrt{3}\)
\(\Leftrightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
27>25>0
→\(\sqrt{27}\)>\(\sqrt{25}\)
\(\sqrt{27}\)>5
6>4>0
\(\sqrt{6}\)>\(\sqrt{4}\)
\(\sqrt{6}\)>2
\(\sqrt{27}\)+\(\sqrt{6}\)>2+5→\(\sqrt{27}\)+\(\sqrt{6}\)>7
0<48<49→\(\sqrt{48}\)<\(\sqrt{49}\)→\(\sqrt{48}\)<7
Từ đó suy ra \(\sqrt{27}\)+\(\sqrt{6}\)>\(\sqrt{48}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(1+\sqrt{12}\right)^2}}}=\sqrt{6+2\sqrt{5-\left|1+\sqrt{12}\right|}}=\sqrt{6+2\sqrt{5-1-\sqrt{12}}}\)
\(=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2.\left|\sqrt{3}-1\right|}=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)\(=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
Vậy: \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3}+1\)
Chúc các bạn học tốt và vote cho mình nhé vì đây là lần đầu tiên mình trả lời! Cảm ơn!
$\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{6+2\sqrt{5-\sqrt{\left(1+\sqrt{12}\right)^2}}}=\sqrt{6+2\sqrt{5-\left|1+\sqrt{12}\right|}=\sqrt{6+2\sqrt{5-1-\sqrt{12}}}=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2.\left|\sqrt{3}-1\right|}}$$\sqrt{6+2.\left(\sqrt{3}-1\right)}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(1+\sqrt{3}\right)^2}=\left|1+\sqrt{3}\right|=1+\sqrt{3}$
Vậy √6+2√5−√13+√48 = √3+1
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
a) Có 7 = 3 + 4 = \(\sqrt{9}+\sqrt{16}\)
mà 7 < 9 => \(\sqrt{7}< \sqrt{9}\)
15 < 16 => \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Có 21 > 20
=> \(\sqrt{21}>\sqrt{20}\)
=> \(\sqrt{21}-\sqrt{6}>\sqrt{20}-\sqrt{6}\) (1)
Lại có 5 < 6
=> \(\sqrt{5}< \sqrt{6}\)
=> \(-\sqrt{5}>-\sqrt{6}\)
=> \(\sqrt{21}-\sqrt{5}>\sqrt{21}-\sqrt{6}\) (2)
Từ (1) và (2) => \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Vậy \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) Có 27 > 25 => \(\sqrt{27}>\sqrt{25}\)
6 > 4 => \(\sqrt{6}>\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > \(\sqrt{25}+\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > 5 + 2
= >\(\sqrt{27}+\sqrt{6}+1>5+2+1\)
=> \(\sqrt{27}+\sqrt{6}+1>8\)
=> \(\sqrt{27}+\sqrt{6}+1>7\) (vì 8 > 7) (1)
Lại có 49 > 48
=> \(\sqrt{49}>\sqrt{48}\)
=> 7 > \(\sqrt{48}\) (2)
Từ (1) và (2) => \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Vậy \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
\(\sqrt{27}+\sqrt{6}+1< \sqrt{48}\)
Bạn chỉ mình cách làm đc k