Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\)
Ta thấy: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{2015}}\)
.........................
\(\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}+\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}\)
=>\(A>2015.\frac{1}{\sqrt{2015}}=\frac{2015}{\sqrt{2015}}=\sqrt{2015}\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}>\sqrt{2015}\)
Minh AnNgọc HnueBăng Băng 2k6Thảo PHồ Đđề bài khó wáỖ CHÍ DŨNGBảo TrâmhLương Minh HằngươngAnh Qua
c/
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)
\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)
<
<
<
ngộ nhỉ?
k nha
đúng chắc vì mình cũng học lớp 7 mà