Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1
b+1/b = b/b + 1/b = 1 + 1/b > 1
=> a-1/a < 1 < b+1/b
Vậỵ a-1/a < b+1/b
+)Ta có a<b
\(\Rightarrow\left|a\right|< \left|b\right|\)
Chúc bn học tốt
giải:
ad - bc = 1 nên ad lớn hơn ac 1 đơn vị
=> bc - ad = -1
so sánh: \(y\)và \(t=\frac{a+m}{b+m}\)
ta so sánh: \(\frac{c}{d}\)và \(\frac{a+m}{b-m}\)
ta xét hiệu của \(\left[c\left(b-m\right)\right]-\left[d\left(a+m\right)\right]\)
\(=\left(bc+cn\right)-\left(ad+md\right)\)
\(=bc+cn-ad-md\)
\(=\left(bc-ad\right)+\left(cn-md\right)\)
\(=-1+0\)
\(=-1\)
\(\Rightarrow\)\(c\left(b+n\right)< d\left(a+m\right)\)
\(\Rightarrow\)\(\frac{c}{d}< \frac{a+m}{b+n}\)
vậy \(y< t\)
Ta có : a-1/a = a/a - 1/a = 1 - 1/a < 1
b+1/b = b/b + 1/b = 1 + 1/b >1
=> a-1/a < 1 < b+1/b
=> a-1/a < b+1/b
k mình nha
Khi a,b cùng dấu thì:
\(\frac{a}{b}\)hoặc \(-\frac{a}{-b}\)\(>0\)
Khi a,b khác dấu:
a dương b âm
\(\frac{a}{-b}< 0\)
a âm b dương
\(-\frac{a}{b}< 0\)
tíc mình nha