Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2007}{2008}>\frac{2007}{2008+2009}\\ \frac{2008}{2009}>\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007}{2008+2009}+\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007+2008}{2008+2009}\\ \Rightarrow M>N\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).
\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).
Suy ra \(A>B\).
\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)\(=\)\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)
k mk nha!!! *o~
\(\frac{2007}{2008}+\frac{2008}{2009}=\frac{2007}{2008}+\frac{2008}{2009}\)
nha ^_^
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
\(=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)+\left(1+\frac{3}{2006}\right)\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)+\frac{3}{2006}\)
\(< 4-\left(\frac{1}{2006}+\frac{1}{2006}+\frac{1}{2006}\right)+\frac{3}{2006}\)
\(=4-\frac{3}{2006}+\frac{3}{2006}\)
\(=4\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)
Có \(\frac{2007}{2008}>\frac{2007}{2008+2009}\)
\(\frac{2008}{2009}>\frac{2008}{2008+2009}\)
=> \(\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007}{2008+2009}+\frac{2008}{2008+2009}=\frac{2007+2008}{2008+2009}\)=> A > B
M=4017.9995019
N=4017
Suy ra M>N
ta có \(\frac{2008}{2008}=1\)
=> \(2007+\frac{2008}{2008}=2008\)
=>M>N