Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
BĐT cần chứng minh tương đương:
\(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Ta có bất đẳng thức $a^2+b^2 \geq \dfrac{(a+b)^2}{2}
$⇔2.(a^2+b^2) \geq (a+b)^2$
$⇔(a-b)^2 \geq 0$ (đúng)
Áp dụng bất đẳng thức trên cho $\dfrac{x}{y}$ và $\dfrac{y}{x}$ có:
$\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} $
$\geq \dfrac{(\dfrac{x}{y}+\dfrac{y}{x})^2}{2}$
Hay $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})^2$
Áp dụng bất đẳng thức Cauchy (Cô-si) có:
$\dfrac{x}{y}+\dfrac{y}{x} \geq 2.\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2$
Nên $(\dfrac{x}{y}+\dfrac{y}{x}).(\dfrac{x}{y}+\dfrac{y}{x}) \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $ (\dfrac{x}{y}+\dfrac{y}{x})^2 \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Suy ra $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})(đpcm)$
Dấu $=$ xảy ra $⇔x=y$
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
ĐKXĐ: \(...\)
\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{y^2}{y\left(x+y\right)}+\dfrac{y^2-x^2}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{x-y}{x+y}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{1}{x+y}-\dfrac{x+y}{xy}\right)\dfrac{x^2-y^2}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\dfrac{-\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{2}{x}+\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{x}+\dfrac{1}{y}\)
b/ \(x^2+y^2+10=2x-6y\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\)
Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)