K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

(100 số số hạng)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)

21 tháng 6 2017

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{100}}>100.\dfrac{1}{\sqrt{100}}=10\)

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

13 tháng 7 2018

Ta có :

\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+........+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\) \(=1-\dfrac{1}{\sqrt{100}}< 1\)

Vậy \(A< 1\)

4 tháng 10 2018

Bài 1:Với mọi n∈N*,ta có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó :

A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Bài 2: 

\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)

\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)

=10

12 tháng 6 2017

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(=\sqrt{121}-\sqrt{1}=11-1=10\)

Lại có: \(\dfrac{1}{\sqrt{k}}=\dfrac{2}{2\sqrt{k}}>\dfrac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)

\(\Leftrightarrow\dfrac{1}{\sqrt{k}}>\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Áp dụng đánh giá trên vào B ta có:

\(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10\)

Suy ra \(A=10< B\Rightarrow A< B\)

13 tháng 6 2017

_cm ơn nhưng mk lm ra r :v =))

21 tháng 6 2018

Tham khảo: Câu hỏi của Lương Tuấn Anh - Toán lớp 7 | Học trực tuyến

21 tháng 6 2018
https://i.imgur.com/4s8fc3X.jpg
6 tháng 6 2018

Giải:

Ta có:

\(\sqrt{1}< \sqrt{100}\Leftrightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Leftrightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{3}< \sqrt{100}\Leftrightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)

...

\(\sqrt{99}< \sqrt{100}\Leftrightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{100}=\sqrt{100}\Leftrightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

Cộng vế theo vế, ta được:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...\dfrac{1}{\sqrt{100}}>\dfrac{100}{\sqrt{100}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...\dfrac{1}{\sqrt{100}}>\dfrac{100}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...\dfrac{1}{\sqrt{100}}>10\)

Vậy ...

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không