K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

\(\frac{2015}{2018^3}-\frac{2017}{2018^3}=-\frac{2}{2018^3}\)      \(\frac{2015}{2018^4}-\frac{2017}{2018^4}=-\frac{2}{2018^4}\)

vì \(-\frac{2}{2018^3}< -\frac{2}{2018^4}\Rightarrow\frac{2015}{2018^3}-\frac{2017}{\cdot2018^3}< \frac{2015}{2018^4}-\frac{2017}{2018^4}\)

chuyển vế ta đc : \(\frac{2015}{2018^3}+\frac{2017}{2018^4}< \frac{2017}{2018^3}+\frac{2015}{2018^4}\)

5 tháng 5 2018

A = 2015.2018/2018^4 + 2017/2018^4 = 2015.2018+2017/2018^4

B=2017.2018/2018^4 + 2015/2018^4 = 2017.2018+2015/2018^4

Vì 2015.2018+2017<2017.2018+2015 nên A<B

18 tháng 5 2019

Ta có:2015/2016>2015/2016+2017+2018

2016/2017>2016/2016+2017+2018

2017/2018>2017/2016+2017+2018-Mình áp dụng so sánh phân số cùng tử đấy.

Suy ra2015/2016+2016/2017+2017/2018>(2015+2016+2017)/(2016+2017+2018)=B

25 tháng 4 2018

A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)

23 tháng 4 2016

2015/2016+2016/2017+2017/2018+2018/2015 < 4

23 tháng 4 2016

Bé Hơn 4

21 tháng 2 2018

tớ chịu thôi SORRY CẬU RẤT NHIỀU

4 tháng 5 2021

A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018

=6048/2018>1

B=2015+2016+2017/2016+2017+2018=6048/6051<1

=>A>B

25 tháng 4 2016

Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018

       B= 2015 / (2015 + 2016+2017)  + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)

vì     2015/2016 > 2015/(2016 + 2017+2018)  ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)

=> A>B

13 tháng 4 2019

có ai là ARMY ko nếu là ARMY thì mọi người cày view chưa

27 tháng 2 2019

Ta có: 20182019 - 20182017 = 20182017(20182 - 1)

20182017 - 20182015 = 20182015(20182 - 1)

Vì 20182017(20182 - 1) > 20182015(20182 - 1)

=>  20182019 - 20182017 > 20182017 - 20182015

Vậy 20182019 - 20182017 > 20182017 - 20182015

Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)


\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Hay \(A>B\)