Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{3}-\sqrt{2}=\dfrac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1}{\sqrt{3}+\sqrt{2}}>\dfrac{1}{\sqrt{4}+\sqrt{3}}=\sqrt{4}-\sqrt{3}\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{4}-\sqrt{3}\Rightarrow2\sqrt{3}>\sqrt{4}+\sqrt{2}\)
Làm tương tự : \(2\sqrt{5}>\sqrt{4}+\sqrt{6};2\sqrt{7}>\sqrt{6}+\sqrt{8},...,2\sqrt{19}>\sqrt{18}+\sqrt{20}\)
Cộng từng BĐT trên , ta được :
\(2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}>\sqrt{4}+\sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{18}+\sqrt{20}=2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}+\sqrt{2}\)
\(\Leftrightarrow A-2\sqrt{1}>B-\sqrt{2}\)
\(\Leftrightarrow A-B>2-\sqrt{2}>0\Rightarrow A>B\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
Xét hiệu :
\(A-B=2\left(\sqrt{1}-\sqrt{2}\right)+2.\left(\sqrt{3}-\sqrt{4}\right)+...+2\left(\sqrt{19}-\sqrt{20}\right)\)
Mà: \(\sqrt{1}