K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 8180 < 2790

b) 377 > 738

c) 536 < 1124

d) 291 < 535

Đúng thì k, sai thì thôi

13 tháng 7 2018

Không

13 tháng 7 2018

\(A=2+2^2+2^3+...+2^{98}+2^{99}+2^{100}\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{97}.\left(1+2\right)+2^{99}.\left(1+2\right)\)

\(\Rightarrow A⋮3\)

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7

Ta biết rằng số chính phương lẻ chia cho 4 dư 1, chia cho 8 dư 1. Số chính phương chẵn thì chia hết cho 4

Vì tổng x2+y2+z2x2+y2+z2 là số lẻ. Do đó trong ba số x2;y2;z2x2;y2;z2 phải có 1 số lẻ hai số chẵn hoặc cả ba số đều lẻ

- Trường hợp có 2 số chẵn, 1 số lẻ thì x2+y2+z2x2+y2+z2 chia cho 4 dư 1. Còn 2015 chia cho 4 dư 3

- Trường hợp cả ba số đầu lẻ thì x2+y2+z2x2+y2+z2 chia cho 8 dư 3. Còn 2015 chia cho 8 dư 7

Vậy phương trình không có nghiệm nguyên

sai hay đúng tùy cậu