K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

A = \(1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

A= \(4\)\(+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Do 1/2007 < 1/2006 ; 1/2008<1/2006 ; 1/2009<1/2006=> 1/2007 + 1/2008 + 1/2009 < 1/2006 + 1/2006 + 1/2006

Mà 1/2006 + 1/2006 + 1/2006 = 3/2006

=> 3/2006  -( 1/2007 + 1/2008 + 1/2009) > 0 

=> \(4+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)>4\)

=> A > 4

26 tháng 7 2017

Ta có:\(\frac{2006}{2007}< 1\)

           \(\frac{2007}{2008}< 1\)

           \(\frac{2008}{2009}< 1\)

            \(\frac{2009}{2006}>1\)\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)

18 tháng 3 2016

tôi thích hoa hồng sai kìa

18 tháng 3 2016

Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:

2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.

Vậy ...

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

11 tháng 5 2016

Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!

batngo

11 tháng 5 2016

ukm máy nó bị cke mất

12 tháng 2 2018

Ta có :

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

12 tháng 2 2018

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)

\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)

\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)

\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)

Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)

\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)

Bí òi

31 tháng 8 2020

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...............+\frac{2}{2007}+\frac{1}{2008}\)

\(B=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+........+\left(1+\frac{1}{2008}\right)+1\)

\(B=\frac{2009}{2}+\frac{2009}{3}+..............+\frac{2009}{2008}+\frac{2009}{2009}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2009}\right)\)

Khi đó: \(\text{​​}\text{​​}\text{​​}\frac{A}{B}=\frac{1}{2009}\)

Chuc bạn học tốt!!

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}}{2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)}\)

hay \(\frac{A}{B}=\frac{1}{2009}\)

14 tháng 11 2019

Ta có : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

                \(=\frac{2007-1}{2007}+\frac{2008-1}{2008}+\frac{2009-1}{2009}+\frac{2006+3}{2006}\)

                  \(=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

                  \(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)

                  \(< 4-\left(\frac{1}{2009}+\frac{1}{2009}+\frac{1}{2009}-\frac{3}{2009}\right)\)     

                    \(=4\)

=> A < 4 

Vậy A < 4