Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
\(B=\frac{19^{21}+6}{19^{21}-7}=\frac{19^{21}-7+13}{19^{21}-7}=1+\frac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\Rightarrow\frac{13}{19^{20}-8}>\frac{13}{19^{21}-7}\)
\(\Rightarrow A>B\)
thông điệp nhỏ:
hay khi ko muốn tích
ai tích mình tích lại nha nha
A= \(\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
B= \(\frac{19^{21}+6}{19^{21}-7}=\frac{19^{21}-7+13}{19^{21}-7}=1+\frac{13}{19^{21}-7}\)
Mà \(\frac{13}{19^{20}-8}>\frac{13}{19^{21}-7}\) nên A > B
k nha
A=19^20+5/19^20-8 >1
=> 19^20+5/19^20-8> 19^20+5+1+19/19^20-8+1+19 B=19^20+5+1+19/19^20-8+1+19 =19^21+6/19^21-7
=> A>B
Ta có: \(A=\frac {19^{20}+5}{19^{20}-8}=\frac {19^{20}-8+13}{19^{20}-8}=1+\frac {13}{19^{20}-8}\)
\(B=\frac {19^{20}+6}{19^{20}-7}=\frac {19^{20}-7+13}{19^{20}-7}=1+\frac {13}{19^{20}-7}\)
Vì \(19^{20}-8<19^{20}-7\) nên \(\frac {13}{19^{20}-8}>\frac {13}{19^{20}-7}\)
\(\Rightarrow\)\(1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\) Hay \(A>B\)
Vậy A>B
ta có A = \(\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
và B = \(\frac{19^{20}+6}{19^{20}-7}=\frac{19^{20}-7+13}{19^{20}-7}=1+\frac{13}{19^{20}-7}\)
vì \(\frac{13}{19^{20}-8}>\frac{13}{19^{20}-7}\)\(\Rightarrow1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\)\(\Rightarrow A>B\)
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo)
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
Có \(\frac{18}{18+19+20}>\frac{18}{18+19+20+21}\)
\(\frac{19}{18+19+21}>\frac{19}{18+19+20+21}\)
\(\frac{20}{18+19+21}>\frac{20}{18+19+20+21}\)
\(\frac{21}{18+19+21}>\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18}{18+19+20+21}+\frac{19}{18+19+20+21}+\frac{20}{18+19+20+21}+\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18+19+20+21}{18+19+20+21}\)
=>\(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>1\)
=>M>1
Còn lại mình không biết, đúng thì tick nha