Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
a)\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)
\(=\left(25\frac{3}{5}-15\frac{3}{5}\right):\left(-\frac{2}{3}\right)\)
\(=10:\left(\frac{-2}{3}\right)\)
\(=-15\)
b)\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\frac{-8}{27}+\frac{1}{10}\)
\(=\frac{-8}{3}+\frac{1}{10}\)
\(=\frac{-77}{30}\)
c)\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\frac{2}{5}:\left(\frac{-6}{5}\right)\)
\(=\frac{-1}{3}\)
\(a.25\frac{3}{5}:\left(-\frac{2}{3}\right)-15\frac{3}{5}:\left(-\frac{2}{3}\right)\)
\(=\frac{128}{5}:\left(-\frac{2}{3}\right)-\frac{75}{5}:\left(-\frac{2}{3}\right)\)
\(=\left(-\frac{192}{5}\right)-\left(-\frac{117}{5}\right)\)
\(=\frac{\left(-192\right)-\left(-117\right)}{5}\)
\(=-15\)
\(b.9.\left(-\frac{2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\left(-\frac{8}{27}\right)+\frac{1}{2}:5\)
\(=-\frac{8}{3}+\frac{1}{10}\)
\(=-\frac{77}{30}\)
\(c.\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[10\left(\frac{-1}{25}\right)+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[\frac{-2}{5}+\left(-1\right)+1\right]:\left(-\frac{6}{5}\right)\)
\(=\left(-\frac{2}{5}\right):\left(-\frac{6}{5}\right)\)
\(=\frac{1}{3}\)
Bạn tham khảo tại đây nhé: Câu hỏi của Nguyễn Chí Thành.
Chúc bạn học tốt!
\(A=\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}=\frac{1+5\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}=\frac{1}{1+5+5^2+...+5^9}+5\)
\(B=\frac{1+3+...+3^{10}}{1+3+...+3^9}=\frac{1+3\left(1+3+...+3^9\right)}{1+3+...+3^9}=\frac{1}{1+3+...+3^9}+3\)
\(\Rightarrow A>B\)