\(A=\dfrac{10^{17}+1}{10^{18}+1}\)

\(B=\dfrac{10^{18}+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

Do \(\dfrac{10^{18}+1}{10^{19}+2}< 1\Rightarrow B< \dfrac{10^{18}+1+9}{10^{19}+1+9}\)

\(\Rightarrow B< \dfrac{10^{18}+10}{10^{19}+10}\)

\(\Rightarrow B< \dfrac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)

\(\Rightarrow B< \dfrac{10^{17}+1}{10^{18}+1}\)

\(\Rightarrow B< A\)

20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)

21 tháng 4 2017

Vì 18/91 < 18/90 =1/5

23/114>23115=1/5

vậy 18/91<1/5<23/114

suy ra 18/91<23/114

21 tháng 4 2017

vì 21/52=210/520

Mà 210/520=1-310/520

213/523=1-310/523

310/520>310/523

vậy 210/520<213/523

suy ra 21/52<213/523

18 tháng 5 2017

Bài này có rất nhiều cách lm nhé!

Ta có : A = \(\dfrac{17^{18}+1}{17^{19}+1}\) => 17A = \(\dfrac{17^{19}+17}{17^{19}+1}\) = \(1+\dfrac{16}{17^{19}+1}\)

B = \(\dfrac{17^{17}+1}{17^{18}+1}\) => 17B = \(\dfrac{17^{18}+17}{17^{18}+1}\) = \(1+\dfrac{16}{17^{18}+1}\)

\(\dfrac{16}{17^{19}+1}\) < \(\dfrac{16}{17^{18}+1}\) ( vì 1719 +1 > 1716+1 )

=> \(1+\dfrac{16}{17^{19}+1}\) < \(1+\dfrac{16}{17^{18}+1}\)

=> 17A < 17B

=> A < B ( vì 17 > 0)

10 tháng 3 2018

Ta có :

\(A=\dfrac{17^{18}+1}{17^{19}+1}\)

17A= \(17\times\dfrac{17^{18}+1}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+17}{17^{19}+1}\)

\(17A=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}\)

\(17A=1+\dfrac{16}{17^{19}+1}\)

Lại có :

\(B=\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=17\times\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}\)

\(17B=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}\)

\(17B=1+\dfrac{16}{17^{18}+1}\)

Mà : \(\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)

\(\Rightarrow1+\dfrac{16}{17^{19}+1}< 1+\dfrac{16}{17^{18}+1}\)

⇒ A < B

Vậy A < B

4 tháng 5 2017

\(A=\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{20}\)

\(>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{10}{20}=\dfrac{1}{2}\)

Vậy \(A>\dfrac{1}{2}\)

a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)\(\frac{9^{19}+1+8}{9^{20}+1+8}\)\(\frac{9^{19}+9}{9^{20}+9}\)\(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)\(\frac{9^{18}+1}{9^{19}+1}\)= A

                                                       Vậy A > B

b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)\(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)\(\frac{10^{2018}-10}{10^{2019}-10}\)\(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)\(\frac{10^{2017}-1}{10^{2018}-1}\)= A

                                                                         Vậy A < B.

                    NHỚ K CHO MK VỚI NHÉ !!!!!!!!

22 tháng 2 2018

a A lon hon B

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

29 tháng 4 2017

cách làm này sai nhé!

3 tháng 3 2017

Cảm ơn bạn