Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1999^{1999+1}}{1999^{2000+1}}=1-\frac{1}{1999^{2000+1}};\)\(\frac{1999^{1998+1}}{1999^{1999+1}}=1-\frac{1}{1999^{1999+1}}\)
Vì \(1-\frac{1}{1999^{2000+1}}< 1-\frac{1}{1999^{1999+1}}\)nên \(\frac{1999^{1999+1}}{1999^{2000+1}}>\frac{1999^{1998+1}}{1999^{1999+1}}\)
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)
\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)
Vậy...
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}+1}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}}{1999^{1999}}-\dfrac{1998}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=1-\dfrac{1998}{1999^{1999}+1999}\)
\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}+1}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}}{1999^{2000}}-\dfrac{1998}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=1-\dfrac{1998}{1999^{2000}+1999}\)
Vì \(\dfrac{1998}{1999^{1999}+1999}>\dfrac{1998}{1999^{2000}+1999}=>\dfrac{1}{1999}A< \dfrac{1}{1999}B=>A< B\)
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}=\dfrac{\left(1999^{1999}+1\right)^2}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(A=\dfrac{\left(1999^{1999}\right)^2+2.1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\left(1\right)\)
\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}=\dfrac{\left(1999^{2000}+1\right)\left(1999^{1998}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999.1999^{1999}+1\right)\left(\dfrac{1}{1999}.1999^{1999}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999^{1999}\right)^2+1999.1999^{1999}+\dfrac{1}{1999}.1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999^{1999}\right)^2+\left(1999+\dfrac{1}{1999}\right).1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\left(2\right)\)
mà \(\left(1999+\dfrac{1}{1999}\right)>2\)
\(\left(1\right).\left(2\right)\Rightarrow A< B\)
\(C=\frac{1999^{1999}+1}{1999^{2000}+1}<\frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999.\left(1999^{1998}+1\right)}{1999.\left(1999^{1999}+1\right)}\)
\(=\frac{1999^{1998}+1}{1999^{1999}+1}\)\(=D\)
=> C<D
Ai k mik mik k lại. chúc các bạn thi tốt
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
để tui xem lại đã hink như tui làm bài này zùi