K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

7 nhỏ hơn 9 nên căn 7 nhỏ hơn căn 9 hay căn 7 nhỏ hơn 3

15 nhỏ hơn 16 nên căn 15 nhỏ hơn căn 16 hay căn 15 nhỏ hơn 4 

Vậy căn 7 + căn 15 nhỏ hơn 7

Do 21 lớn hơn 20 nên căn 21 lớn hơn căn 20

5 nhỏ hơn 6 nên căn 5 nhỏ hơn căn 6

Nên căn 21 trừ căn 5 lớn hơn căn 20 trừ căn 6

17 tháng 6 2019

a) \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

Vậy \(\sqrt{7}+\sqrt{15}< 7\)

b) Vì \(\hept{\begin{cases}\sqrt{21}>\sqrt{20}\\-\sqrt{5}>-\sqrt{6}\end{cases}}\Rightarrow\sqrt{21}+\left(-\sqrt{5}\right)>\sqrt{20}+\left(-\sqrt{6}\right)\)

hay \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

13 tháng 8 2018

a) Có 7 = 3 + 4 = \(\sqrt{9}+\sqrt{16}\)

mà 7 < 9 => \(\sqrt{7}< \sqrt{9}\)

15 < 16 => \(\sqrt{15}< \sqrt{16}\)

=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

Vậy \(\sqrt{7}+\sqrt{15}< 7\)

b) Có 21 > 20

=> \(\sqrt{21}>\sqrt{20}\)

=> \(\sqrt{21}-\sqrt{6}>\sqrt{20}-\sqrt{6}\) (1)

Lại có 5 < 6

=> \(\sqrt{5}< \sqrt{6}\)

=> \(-\sqrt{5}>-\sqrt{6}\)

=> \(\sqrt{21}-\sqrt{5}>\sqrt{21}-\sqrt{6}\) (2)

Từ (1) và (2) => \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

Vậy \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

c) Có 27 > 25 => \(\sqrt{27}>\sqrt{25}\)

6 > 4 => \(\sqrt{6}>\sqrt{4}\)

=> \(\sqrt{27}+\sqrt{6}\) > \(\sqrt{25}+\sqrt{4}\)

=> \(\sqrt{27}+\sqrt{6}\) > 5 + 2

= >\(\sqrt{27}+\sqrt{6}+1>5+2+1\)

=> \(\sqrt{27}+\sqrt{6}+1>8\)

=> \(\sqrt{27}+\sqrt{6}+1>7\) (vì 8 > 7) (1)

Lại có 49 > 48

=> \(\sqrt{49}>\sqrt{48}\)

=> 7 > \(\sqrt{48}\) (2)

Từ (1) và (2) => \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Vậy \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)


b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

a) Ta có: \(\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{21}\right)\)

\(=\sqrt{70}-7\sqrt{6}+\sqrt{30}-3\sqrt{14}\)

 

10 tháng 7 2021

em cảm ơn ạ vui

nhưng sao ko làm hết cả bài cho em ạ ????ngaingung

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

a) <

b) <

c) >

d) <

      a <

            b <

                           c >

                   d <