K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có : \(B=\frac{9^{2009}+1}{9^{2010}+1}< 1\)

\(\Rightarrow B< \frac{9^{2009}+1+8}{9^{2010}+1+8}\)

\(\Rightarrow B< \frac{9.\left(9^{2008}+1\right)}{9.\left(9^{2009}+1\right)}=\frac{9^{2008}+1}{9^{2009}+1}\)

Vậy B < A

27 tháng 3 2019

    B = 92009 + 1/92010 + 1 < 1

=> B < 92009 + 1 + 8 / 92010 + 1 + 8 = 92009 + 9 / 92010 + 9 = 9 (92008 + 1 ) / 9 ( 92007 + 1) = A

=>B < A 

              #Hoq chắc _ Baccanngon

5 tháng 2 2016

Do 20092010- 2 < 20092011- 2 ⇒ B < 1

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)

25 tháng 6 2018

Ta có : 

\(17A=\frac{17^{2009}+17}{17^{2009}+1}=\frac{17^{1009}+1+16}{17^{2009}+1}=\frac{17^{2009}+1}{17^{2009}+1}+\frac{16}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)

\(17B=\frac{17^{2010}+17}{17^{2010}+1}=\frac{17^{2010}+1+16}{17^{2010}+1}=\frac{17^{2010}+1}{17^{2010}+1}+\frac{16}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)

Vì \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\) nên \(17A>17B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)

\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)

\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)

\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)

Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)