K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

\(a)\) Ta có : 

\(107^{50}=\left(107^2\right)^{25}=11449^{25}\)

\(73^{75}=\left(73^3\right)^{25}=389017^{25}\)

Vì \(11449^{25}< 389017^{25}\) nên \(107^{50}< 73^{75}\)

Vậy \(107^{50}< 73^{75}\)

23 tháng 3 2018

a)  107^50>73^75

b)  2^91<5^35

c)  54^4<21^12

26 tháng 8 2023

Bài 1:

   D     =      5  + 52 + 53+...+ 5100

5.D     =             52 + 53+...+5 100 + 5101

5D - D = 5101 - 5

4D       = 5101 - 5

  D      = \(\dfrac{5^{101}-5}{4}\)

26 tháng 8 2023

Bài 2:

So sánh 

a, 544 = (2.33)4 = 24.312  

    2112 = (3.7)12 = 312.712

Vì 24 < 712 nên 544 < 2112

b, 339 và 1121

    339   =   (313)3

   1121 = (117)3

     313 = (32)6.3 = 96.3 < 97 < 117 

Vậy 339  < 1121

    

 

26 tháng 8 2023

1) \(D=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)

\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)

\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)

2)

a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)

b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)

\(\Rightarrow3^{39}< 11^{21}\)

c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)

\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)

\(201^{60}>398^{45}\)

16 tháng 8 2021

291 và 535

291 = (213)7 = 81927

535 = (55)7 = 31257

Vì 8192> 31257 => 291 > 535

Vậy 291 > 535

16 tháng 8 2021

291 <  535

26 tháng 9 2023

So sánh:\(10^{10}\) và \(48.50^5\)

Ta có:

\(10^{10}=10^{2.5}=\left(10^2\right)^5=100^5=\left(2.50\right)^5=2^5.50^5=32.50^5\)

Vì \(32.50^5< 48.50^5\)

\(\Rightarrow10^{10}< 48.50^5\)

27 tháng 6 2016

291 < 535

27 tháng 6 2016

291 < 535 

8 tháng 10 2021

Ta có: \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}\)

\(5^{36}=\left(5^2\right)^{18}=25^{18}\)

Vì \(32^{18}>25^{18}\) nên \(2^{90}>5^{36}\) hay \(2^{91}>5^{36}\)

 

19 tháng 9 2016

b)Ta có:

 \(3^{99}>3^{93}=\left(3^3\right)^{21}=27^{21}\)

Vì \(27^{21}>11^{21}\) nên \(3^{99}>27^{21}>11^{21}\) hay \(3^{99}>11^{21}\)

 

19 tháng 9 2016

a) Ta có:

19920 < 20020 = 20015.2005

200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005

Vì 19920 < 20015.2005 < 20015.10005 < 200315

=> 19920 < 200315

b) Ta có:

399 = (33)33 = 2733 > 1121

=> 399 > 1121

18 tháng 2 2020

Quy đồng: \(\frac{n}{n+1}\)\(\frac{n\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}\)=\(\frac{n^2.2n}{\left(n+1\right)\left(n+2\right)}\)

\(\frac{n+1}{n+2}\)\(\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+2\right)}\)\(\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)

Vì n2+2n+1 < n2.2n+1 nên...

Vậy...

Ko chắc nha

Nghe nó ko có lý kiểu j j ý