Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
Lời giải:
$3\sqrt{7}=\sqrt{3^2.7}=\sqrt{63}$
$4\sqrt{5}=\sqrt{4^2.5}=\sqrt{80}$
Mà $63<80$ nên $3\sqrt{7}< 4\sqrt{5}$
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)
a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)
\(1^2=1\)
mà \(37-12\sqrt{10}< 0\)
nên \(2\sqrt{5}-3\sqrt{2}< 1\)
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
\(\left(5-2\sqrt{7}\right)^2=53-20\sqrt{7}=19+34-20\sqrt{7}\)
\(\left(3-\sqrt{10}\right)^2=19-6\sqrt{10}\)
mà \(34-20\sqrt{7}>-6\sqrt{10}\)
nên \(5-2\sqrt{7}>3-\sqrt{10}\)
tại sao phần 34-20√7 lại lớn hơn 6√10(ý mình ở đây là bạn giải thích lại giúp mình là vì sao nó lại thế)
\(5\sqrt{3}-4< 3\sqrt{5}\)