Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2011}=1+\frac{2}{2011}\)
Ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)+\left(1+\frac{2}{2011}\right)\)
= \(\left(1+1+1\right)+\left(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)\)
Ta có :
\(\frac{1}{2012}+\frac{1}{2013}< \frac{1}{2012}+\frac{1}{2012}=\frac{2}{2012}\)
mà : \(\frac{2}{2012}< \frac{2}{2011}=>\frac{1}{2012}+\frac{1}{2013}< \frac{2}{2011}\)
=> \(\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>0\)
Vậy : \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>3\)
Vậy : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
ủng hộ mik nhá các bạn ơiii ^_^"
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)(ĐPCM)
Học tốt
1.
tong cua hai so la;
425x2=850
vi ab la so co hai chu so nen => 7ab hon ab la 700 don vi
so 7ab la:
(850+700):2=775
=> ab=75
2.
ta co
2010/2011=1-1/2011
2011/2012=1-1/2012
2012/2013=1-1/2013
2013/2014=1-1/2014
vi so bi tru deu la 1 nen ta co:
1/2011>1/2012>1/2013>1/2014
vay 2010/2011<2011/2012<2012/2013<2013/2014
\(A=\frac{2012.2010+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{\left(2011+1\right).\left(2011-1\right)+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{2011\left(2011+1\right)-2011-1+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{2011^2+2011-2011-1+2013}{2011^2+2012}\)
\(\Rightarrow A=\frac{2011^2-1+2013}{2011^2+2012}\)
\(\Rightarrow A=\frac{2011^2+2012}{2011^2+2012}=1\)
Vậy A = 1