\(\dfrac{y^2\left(x+1\right)+\left(x+1\right)}{y^2+1}\) và B=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

Ta có : 

A = \(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\)  = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\) = x+1 (1)

B = \(\dfrac{y^2\left(x-1\right)+2x-x}{y^2+2}=\dfrac{\left(y^2+2\right)\left(x-1\right)}{y^2+2}=x-1\)  (2)

Từ (1) và (2)

=> A > B

\(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\)  = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\)

\(A=\dfrac{y^2\left(x+1\right)+\left(x+1\right)}{y^2+1}=\dfrac{\left(x+1\right)\left(y^2+1\right)}{y^2+1}=x+1\)

\(B=\dfrac{y^2\left(x-1\right)+2\left(x-1\right)}{x+y}=\dfrac{\left(x-1\right)\left(y^2+2\right)}{x+y}\)

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

3 tháng 10 2017

1. Tìm x:

a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80

b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

c) Xem lại đề

d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)

e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2

3 tháng 10 2017

3. Tính giá trị của biểu thức:

\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)

\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)

\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)

17 tháng 10 2017

de bai

18 tháng 10 2017

tìm x,y

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)

\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)

Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :

\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)

b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:

\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)

\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)

d) \((2x-1)^3=-27=(-3)^3\)

\(\Rightarrow 2x-1=-3\)

\(\Rightarrow 2x=-2\Rightarrow x=-1\)

e) \((x-2)^2=1=1^2=(-1)^2\)

\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)

f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)

\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)

g) \((x-1)^2=(x-1)^6\)

\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)

\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\left\{0;1;2\right\}\)

15 tháng 8 2017

Nhiều quá bạn ơi ( Hhôm nào cũng thấy đăng 6,7 câu )

15 tháng 8 2017

giúp người đi bạn

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x